Critical glycemic events, such as hypo- or hyperglycemia, are extremely common during the first week post-partum in very preterm neonates. Both hypo- and hyperglycemic changes have been associated with poor neurological outcome. Continuous glucose monitoring (CGM) is a promising tool to reduce glycemic variability in the preterm population and whole-head Diffuse Optical Tomography (DOT) is a promising tool for continuous monitoring of brain hemodynamics in newborns. In this study, we performed a combined CGM-DOT acquisition in a very preterm newborn (28 weeks gestational age). The newborn was monitored for 7 days continuously. Twelve events were detected during this period: 8 mild hypoglycemic events, one severe hypoglycemic event, two mild hyperglycemic events and one event with a mild hypo- followed by a mild-hyperglycemia. DOT data were available for all the events but two. DOT data were reconstructed with a neonatal head model for the severe hypoglycemic event before the start of the hypoglycemic event and during the maximum peak of hypoglycemia. These preliminary results showed a regional specificity of the hemodynamic changes during hypoglycemia, with a predominant recruitment of the motor and parietal areas. This study highlights the importance of using whole-head DOT in this research field and the feasibility to perform combined CGMDOT monitoring in very preterm neonates. Future clinical trials are required to investigate this clinical problem more thoroughly and shed light on the impact of tight glycemic control on the newborn brain.
Diffuse optical tomography (DOT) has recently proved useful for detecting whole-brain oxygenation changes in preterm and term newborns’ brains. The data recording phase in prior explorations was limited up to a maximum of a couple of hours, a time dictated by the need to minimize skin damage caused by the protracted contact with optode holders and interference with concomitant clinical/nursing procedures. In an attempt to extend the data recording phase, we developed a new custom-made cap for multimodal DOT and electroencephalography acquisitions for the neonatal population. The cap was tested on a preterm neonate (28 weeks gestation) for a 7-day continuous monitoring period. The cap was well tolerated by the neonate, who did not suffer any evident discomfort and/or skin damage. Montage and data acquisition using our cap was operated by an attending nurse with no difficulty. DOT data quality was remarkable, with an average of 92% of reliable channels, characterized by the clear presence of the heartbeat in most of them.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.