We fabricated MoS2-Au hybrid nanostructures using nanosphere lithography and investigated their photoluminescence (PL) characteristics. Arrays of Au nanotriangles (NTs) and nanoholes (NHs) were fabricated for comparison. MoS2 monolayers on both NT and NH arrays exhibited enhanced PL intensity, compared with those on SiO2/Si substrates and flat Au thin films. Numerical simulations revealed clear distinction in the electric field intensity distributions in the NT and NH arrays at the PL excitation wavelength. Such difference could be attributed to the excitation of localized and propagating surface plasmon in the NT and NH arrays. This work helps us to understand how the plasmonic NT and NH arrays affect the physical properties of the MoS2 monolayers on them.
The coupling between surface plasmons (SPs) and excitons in 2D transition metal dichalcogenide (TMD) materials has been attracted growing research attention in recent days. Strong electric field confinement and absorption enhancement could be expected, as a result of the SP-excition couping. We prepared exfoliated flakes of MoS2, a representative TMD material, on Au nanogratings fabricated by electron beam lithography. We studied influences of propagating SP on optical properties of the MoS2 flakes on the Au nanogratings, based on both experimental measurements and numerical calculations. Local surface potential maps of the samples suggested that the strain states in the MoS2 flakes and the dipoles formed at the MoS2/ Au interface could cause spatial modulation of the bandgap energies of the MoS2 flakes. The surface potential measurements were carried out using Kelvin probe force microscopy in dark and under TM/TE-mode light illumination. Band diagrams of the MoS2/Au nanogratings were proposed to explain all the experimental results. This study can help us to understand and control the physical characteristics of the TMD/metal nanostructures.
MoS2, a representative 2D atomically thin semiconductor, has a sizable band gap leading to intensive research efforts to investigate its unique optical properties and realize a novel optoelectronic device based on MoS2. However, limited optical absorption in extremely thin MoS2 layers is an obstacle for high-efficiency light absorbing devices. In this work, we investigated how reflection and transmission phase-shift at the highly absorbing MoS2 interface could affect the absorption spectra of the MoS2 monolayers on SiO2/Si substrates (SiO2 thickness: 40 ~ 130 nm). Such interface-phase-shift gave rise to interference in MoS2 layer, although the layer thickness was only 0.7 nm, much smaller than the wavelength of the visible light. We compared measured and calculated optical reflection spectra, which showed that aforementioned interface-interference enhanced optical absorption in MoS2 monolayers. Raman intensity of MoS2 monolayers largely varied depending on the SiO2 thickness, which could be well explained by the calculated absorption in MoS2 layers. In addition, the interface-interference enabled omnidirectional absorption enhancement. This work showed that proper choice of the SiO2 thickness could provide us a simple and useful means to improve optical absorption in MoS2 monolayers.
We fabricated Si nanopillar (NP) arrays using e-beam lithography and coated them with poly(3-hexylthiophene-2,5-diyl) (P3HT) organic semiconductor layers. Optical reflection spectra showed that Mie resonance significantly increased the scattering cross-sections of the NPs and strongly concentrated incident light in the NPs. Such concentrated light should produce numerous charge carriers and affect the subsequent drift/diffusion of the carriers. Surface photovoltage (SPV), defined as the difference of the surface potential in dark and under light, could reveal the formation and separation of the photo-generated carriers. Especially, Kelvin probe force microscopy technique allowed us to obtain real space SPV maps with nanoscopic spatial resolution. The SPV values at the NP tops were much larger than those at the flat regions around the NPs. This study would provide us insights into improving performance of organic/inorganic hybrid nanostructure-based devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.