Optical spatial frequency filtering is a key method for information processing in biological and technical imaging. While conventional approaches rely on bulky components to access and filter the Fourier plane content of a wavefield, nanophotonic approaches for spatial frequency filtering have recently gained attention. Here computational and experimental progress towards the design and demonstration of metasurfaces with spatial frequency filtering capability for optical image processing will be presented. Using the example of a metasurface consisting of radial rod trimers we demonstrate its potential to perform edge enhancement in an amplitude image and conversion of phase gradients in a wavefield into intensity modulations. The presented results indicate a potential avenue for ultra-compact image processing devices with applications in biological live-cell imaging.
Metal-semiconductor-metal (MSM) photodiodes are commonly used in ultrafast photoelectronic devices. Recently it was shown that localized surface plasmons can sufficiently enhance photodetector capabilities at both infrared and visible wavelengths. Such structures are of great interest since they can be used for fast, broadband detection. By utilizing the properties of plasmonic structures it is possible to design photodetectors that are sensitive to the polarization state of the incident wave. The direct electrical readout of the polarization state of an incident optical beam has many important applications, especially in telecommunications, bio-imaging and photonic computing. Furthermore, the fact that surface plasmon polaritons can circumvent the diffraction limit, opens up significant opportunities to use them to guide signals between logic gates in modern integrated circuits where small dimensions are highly desirable. Here we demonstrate two MSM photodetectors integrated with aluminum nanoantennas capable of distinguishing orthogonal states of either linearly or circularly polarized light with no additional filters. The localized plasmon resonances of the antennas lead to selective screening of the underlying silicon from light with a particular polarization state. The non-null response of the devices to each of the basis states expands the potential utility of the photodetectors while improving precision. We also demonstrate a design of waveguide-coupled MSM photodetector suitable for planar detection of surface plasmons.
We present a modified asymmetric stripe plasmonic waveguide design for plasmonic integrated input port structures. Such a waveguide shape can significantly increase the surface plasmon polariton (SPP) propagation length. A computational investigation of the waveguide mode analysis, excitation, and guiding is presented as well as SPP propagation length improvement strategies. The proposed structure has the potential to be CMOS compatible and could be used in highly integrated optoelectric circuits.
Optical nano-antennas have been the focus of intense research recently due to their ability to manipulate electromagnetic radiation on a subwavelength scale, and there is major interest in such devices for a wide variety of applications in photonics, sensing, and imaging. Significant effort has been put into developing highly compact, novel, next-generation light sources, which have great potential in realizing efficient sub-wavelength single photon sources and enhanced biological and chemical sensors. We have developed a number of innovative optical antenna designs including elements of chiral metasurfaces for enabling circularly polarized emission from quantum sources, new designs derived from Radio Frequency (RF) elements for quantum source enhancement and directionality, and nanostructures for investigating plasmonic dark-modes that have the ability to significantly reduce the Q-factor of nano-antennas. A challenge, however, remains the development of a scalable nanofabrication technology. The capacity to mass-produce nano-antennas will have a considerable impact on the commercial viability of these devices, and greatly improve research throughput. Here we present recent progress in the development of scalable fabrication strategies for producing of nano-antennas and antenna arrays, along with slot based plasmonic optical devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.