This will count as one of your downloads.
You will have access to both the presentation and article (if available).
To this end, we develop a dual-polarization sideband-separating superconductor-insulator-superconductor (SIS) mixer receiver, FINER, for the Large Millimeter Telescope (LMT) situated in Mexico. Harnessing advancements from ALMA’s wideband sensitivity upgrade (WSU) technology, FINER covers radio frequencies spanning 120–360 GHz, delivering an instantaneous intermediate frequency (IF) of 3–21 GHz per sideband per polarization, which is followed by a set of 10.24 GHz-wide digital spectrometers. At 40% of ALMA’s light-collecting area, the LMT’s similar atmospheric transmittance and FINER’s 5 times wider bandwidth compared to ALMA culminate in an unparalleled spectral scanning capability in the northern hemisphere, paving the way for finer spectral-resolution detection of distant galaxies.
Photogrammetry has been used as an alternative measurement technique for the 32-m primary since 20151, and has gradually replaced our use of holography and laser trackers for this task2 during recent years. Once the object has been targeted, photogrammetry maps may be obtained in around one hour. The technique does not require the installation of special equipment on the antenna, and has the advantage of allowing surface maps to be taken at any chosen elevation. The main drawbacks for the LMT application are environmental, since the antenna operates without an enclosure; strong winds may prevent use of the site tower crane for image taking, while the formation of condensation and frost on the reflector surface will "switch off" the reflective targets.
In this paper we discuss comparative measurements taken as the first outer segments were installed, and the use of photogrammetry to carry out the alignment of the fully installed 50-meter surface. At the time of writing this activity is still in progress, however full-surface alignment to the order of just over 100 microns was achieved quite quickly, with multiple elevation maps allowing the development of a usable 50-m active surface model for compensation of gravitational distortions.
Accurate photogrammetry requires a robust strategy for the incorporation of multiple camera stations, a task complicated by the size of the antenna, obstructions of the surface by the sub-reflector and tetrapod legs, and the practicability of using the site tower crane as a moving camera platform. Image scaling is also a major consideration, since photogrammetry lacks any inherent distance reference. Therefore appropriate scale bars must be fabricated and located within the camera field of view. Additional considerations relate to the size and placement of reflective targets, and the optimization of camera settings. In this paper we present some initial comparisons of laser tracker, holography and photogrammetry measurements taken in 2015, showing clearly the status of alignment for distinct zones of the currently operating 32.5 m primary collecting area.
The LMT uses an ”on-the-fly” trajectory generator that receives as input the target location of the telescope and in turn outputs a commanded position to the servo system. The sun avoidance strategy is also implemented ”on-the-fly” where it intercepts the input to the trajectory generator and alters that input to avoid the sun. Two sun avoidance strategies were explored. The first strategy uses a potential field approach where the sun is represented as a high-potential obstacle in the telescope’s workspace and the target location is represented as a low-potential goal. The potential field is repeatedly calculated as the sun and the telescope move and the telescope follows the induced force by this field. The second strategy is based on path planning using visibility graphs where the sun is represented as a polygonal obstacle and the telescope follows the shortest path from its actual position to the target location via the vertices of the sun’s polygon.
The visibility graph approach was chosen as the favorable strategy due to the efficiency of its algorithm and the simplicity of its computation.
A new control system was designed and built within the project to implement an active surface at the LMT. The technical concept for the active surface control system is to provide a set of bus boxes with built-in control and I/O capabilities to run four actuators each. Bus boxes read the LVDT sensor position and limit switch status for each actuator and use this information to drive the actuator’s DC motor, closing the position loop. Each bus box contains a DC power supply for the electronics, a second DC power supply for the motors, an embedded controller with I/O to close the position loop, and a custom printed circuit board to condition the LVDT signals and drive the motors. An interface printed circuit board resides in each actuator providing a single connector access to the LVDT, the motor, and the limit switches. During the fall of 2013, 84 bus boxes were commissioned to control the 336 actuators of the inner three rings of the telescope. The surface correction model was determined using holography measurements and the active surface system has been in regular use during the scientific observation at the LMT.
View contact details
No SPIE Account? Create one