In this paper, we designed an optical attenuator based on optical scatting. Which consist of an optical scatting material and cylindrical attenuation structure. The diffusing characteristics of material and attenuation properties of the device have been simulated by ray-tracing, and the simulated results agree very well with the experimental results. The attenuator has been successfully used in high energy laser beam intensity profile measurement system.
KEYWORDS: Sensors, Detector arrays, Laser applications, Optical testing, Signal attenuation, Signal detection, Pulsed laser operation, Mid-IR, Temperature metrology, Laser energy
The far field beam profile is of significant importance to the analysis of the atmospheric propagation effect and evaluation of the beam control capability, tracking and aiming precision of laser system. In the paper, technology of laser beam measurement such as mid-infrared laser detection at wide temperature range, power density attenuation, photoelectric and calorimetric compound method for laser measurement, synchronous detecting of multi-channel pulsed signal are introduced. A series of instrumented target with detector array are developed for laser beam power density distribution measurement at far field. The power in the bucket, strehl ratio, centroid and jitter of beam can be calculated from the measured results.
It is presented that the thermally induced transmitted wavefront aberration of a high-reflectivity sampling mirror was detected on line using a Shack-Hartmann wavefront sensor (SHWS) in the beam quality measurement of an intense laser. As a result of heat absorption in the sampling mirror with active aperture of 120 mm, thermally induced wavefront aberration emerged when the mirror was exposed to high laser intensity of several kilowatts per centimeter square. Time-dependent wavefront aberration curves were acquired, and the transmitted wavefronts were reconstructed based on Zernike mode reconstruction theory. The experimental results indicate that the magnitude of the dynamic transmitted wavefront aberration increases gradually with the growing heat deposit during laser irradiation. The maximum of wavefront aberration observed after irradiation for 5 seconds reaches 0.11 μm of root-mean-square value. After further analysis, the experimental results of dynamic aberration can be applied in modifications for the measurement results of intense laser beam quality or tests for the thermal stability of optics used in the intense laser systems.
Modeling of Tm-doped fiber lasers pumped with 793 nm, 1.6 μm and 1.9 μm is presented and compared. Output performance of three different pump schemes with active fiber length, pump power and output reflectivity is investigated. Numerical simulation shows that, with 793 nm pump, the cross relaxation process is of vital importance for high efficient operation of Tm-doped fiber laser. And, 1.9 μm pump scheme is more likely to offer even higher output compared with 793 nm pump and 1.6 μm pump.
A synthesis of the calorimetric and photoelectric method on the high energy laser beams measurement is presented. Data fusion of the two kinds of detector units is achieved with real-time scaling onsite. A set of compound diagnostic system is developed for the large area laser beam intensity distribution measurement, which is mainly composed of 256 calorimetric detectors, 120 photoelectric detectors, multi-channel data sampling module and one central processing computer. The total energy of the laser beam is accurately measured with calorimetric detectors, and the spatial intensity distribution with high temporal resolution is given by the photoelectric detectors. With the merits of energy accuracy and the temporal resolution based on the two kinds of detector units, the compound diagnostic system can be used to measure accurately the far-field temporal and spatial distribution of high energy laser beams.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.