With the introduction of the NXE:3400B scanner, ASML has brought EUV to High-Volume Manufacturing (HVM). The high EUV power of >200W being realized with this system satisfies the throughput requirements of HVM, but also requires reconsideration of the imaging aspects of spectral purity, both from the details of the EUV emission spectrum and from the DUV emission. This paper will present simulation and experimental results for the spectral purity of high-power EUV systems, and the imaging impact of this, both for the case of with and without a pellicle. Also, possible controls for spectral purity will be discussed, and a novel method will be described to measure imaging impact of varying CE and DUV. It will be shown that CE optimization towards higher source power leads to reduction in relative DUV content, that the small deltas in EUV source spectrum for higher power do not influence imaging. It will also be shown that resulting variations in DUV do not affect imaging performance significantly, provided that a suitable reticle black border is used. In short, spectral purity performance is not a bottleneck for increasing power of EUV systems to well above 250W.
The EUV pellicle is a thin membrane intended to shield the reticle from particles. Any particles on the pellicle will be out of focus but large particles can still locally influence pattern formation. This work experimentally determines the local imaging influence dependence of particle size. A predictive model for CD change was formulated and validated. Furthermore, a linear relation between the change of CD vs. LWR was derived and found to be driven by the resist only. Therefore, the CD and LWR influence from a particle can be predicted, enabling meaningful specification limits for particle size from an imaging perspective.
We show, in simulation and by wafer exposures, how to improve an EUV Single Exposure Metal direct print at NA 0.33. Based on a fundamental understanding of Mask 3D effects, we show how to design a pupil in conjunction with induced aberrations to cure the M3D phase effects. For L/S through pitch, we increase NILS/exposure latitude by ~10%, reduce the best focus range by two thirds, and reduce Bossung tilts. Simultaneously, we reduce tip-to-tip (T2T) CD by 1-4nm at constant exposure latitude and LCDU. In EUV, M3D effects lead to phase modulation of the diffracted orders. This results in relative pattern shifts of images coming from different pixels in the pupil. We find that these pattern shifts are pole specific as M3D phase effects effectively induce phase tilts of opposite sign for opposite poles. This results in a pattern independent aerial image shifts for each pole. Here we show how these shifts can explain M3D phase effects (NILS loss by fading, best focus through pitch variation, Bossung tilts) and how they drive source optimization. Furthermore, we show how it is possible to counteract these M3D effects. Disentangling the diffraction orders, so that each point in the pupil plane is passed only by a single diffraction order, we can find a suitable aberration (Z6 for L/S) that effectively introduces a phase tilt of opposite sign per pole and cures the M3D effects. The idea is also applicable to other use cases: For dense contact holes we need to inject a phase front that shifts 0th against 1st order phase.
The purpose of pellicles is to protect reticles from particle contamination, thus reducing the number of defects and increasing yield. In this paper we show how recent progress in pellicle technology has succeeded in solving the main challenges in imaging with EUV pellicles. We demonstrate this using the recent results of imaging tests in scanner, EUV reflectivity measurements, and lifetime testing. EUV light reflectivity of pellicles is one of the effects that have negatively impacted imaging with pellicles in the past. Light reflected from pellicles leads to the overexposure of neighboring fields in the corners and edges. Tests with pellicles produced using a new process show EUV reflectivity within specification of 0.04%, and measured impact on critical dimension in the corners below 0.15nm for multiple pellicles. Lifetime performance was tested by exposing up to 3000 wafers with a pellicle while periodically assessing the stability of imaging metrics. The lithometrics studies include: critical dimension (CD) and critical dimension uniformity (CDU), and contrast (via line width roughness). DoseMapper, which is an EUV scanner application developed to improve CDU, was applied during the lifetime test. Here we show that it can successfully reduce the pellicle-induced CDU and CDU over lifetime (previously shown to be dominated by pellicle EUV transmission drift). Our results using DoseMapper show that whilst intrafield CDU 3sigma increases over lifetime, it stays comfortably within the 1.1nm NXE3400 ATP specification using DoseMapper.
Defectivity in EUV scanners gains much more importance as they move towards the high-volume manufacturing. The reticle (mask) needs to be protected from particle contamination, both inside and outside the scanner environment. One widely used method to realize this is to make use of a thin protective layer on top of the mask, which is called pellicle. In this work we investigate the impact on printed features caused by particles laying on top of the pellicle for a High-NA EUV scanner. The study was supported by simulations using the most up to date High-NA EUV scanner projected design. The most relevant lithographic metrics (namely, change in Critical Dimension, Normalized Intensity Log Slope, dose sensitivity, non-Telecentricity, Pattern Shift and Mask Error Enhancement Factor) have been considered in the study. An experimentally calibrated simulation model is used to predict the particle transmission as function of the particle size. The goal is to set a well-reasoned (based on imaging requirements) maximum particle size specification for production of pellicles and cleanliness inspection. Some sets of mask patterns and sources (use cases) that likely will be used in high volume manufacturing are considered. Furthermore, a comparison with existing 0.33 NA EUV simulation results is done.
CD-based process windows have been an analysis workhorse for estimating and comparing the robustness of semiconductor microlithography processes for more than 30 years. While tolerances for variation of CD are decreasing in step with the target CD size, the acceptable number of printed defects has remained flat (Hint: Zero) as the number of features increases quadratically. This disconnect between two key process estimators, CD variability and defect rate, must be addressed. At nodes that require EUV lithography, estimating the printed defects based solely on a Mean CD (“Critical Dimension”) process window is no longer predictive. The variability / distribution of the printed CDs must be engineered so that there are no failures amongst the billions of instances, rendering the Mean CD, often measured on just hundreds or thousands of instances, a poor predictor for outliers. A “defect-aware” process window, where the count of printed defects is considered in combination with more advanced statistical analysis of measured CD distributions can provide the needed predictability to determine whether a process is capable of sufficient robustness. Determining process robustness where stochastics and defects are taken into account can be simplified by determining the CD process margin. In this work we study dense contact hole arrays exposed with 0.33NA single exposure EUV lithography after both the lithography and etch steps. We describe a methodology for expanding the analysis of process windows to include more than the mean and 3σ of the data. We consider the skew and kurtosis of the distribution of measured CD results per focus-exposure condition and compare / correlate the measured CD process window results to the CD process margin.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.