Franz Joebsis first used near infrared spectroscopy (NIRS) as a tool for the in vivo monitoring of tissue oxygenation. Today, NIRS instruments are more and more used in clinical environments since these systems are now easy to use, sensitive, robust, give rapid analysis and have multiple measuring points. In the present work, optic fibre probes were used as optical head of a CW-NIR instrument adapted for in vivo NIRS measurements in the brain of rodents. This prototype was designed for non-invasive analysis of the two main forms of haemoglobin: oxy-haemoglobin (HbO2) and deoxy-haemoglobin (Hb), chromophores present in biological tissues. In the present experiments it was applied to measure non- invasively HbO2 and Hb levels in the rat brain; that are markers of the degree of tissue oxygenation, thus providing an index of blood levels and therefore of brain metabolism. In addition, the same animals set for central NIRS studies, were also surgically prepared for electrophysiological monitoring of cell firing in discrete brain areas. These are raphe dorsalis nucleus, locus coeruleus, ventral tegmental area that are defined as main serotoninergic, noradrenergic and dopaminergic cell containing regions of the CNS and therefore involved in the major cerebral syndromes. Then, following a control recording period, exogenous oxygen (O2, 0.1bar, 2min) or carbon dioxide (CO2 0.1bar, 20min) was inflated orally. The data gathered indicate an original relationship between NIRS analysis of brain metabolism and electrical changes in three major nuclei of CNS involved in neurophysiologic and pathologic activities.
The feasibility of non-invasive analysis of brain activities was studied in the attempt to overcome the major limitation of actual in vivo methodologies i.e. invasiveness. Optic fibre probes were used as optical head of a novel, highly sensitive near infrared continuous wave spectroscopy (CW-NIR) instrument. This prototype was designed for non-invasive analysis of the two main forms of haemoglobin: oxy-haemoglobin (HbO2) and deoxy-haemoglobin (Hb), chromophores present in biological tissues. It was tested in peripheral tissue (human gastrocnemius muscle) and then reset to perform measurement on rat brain. In animal studies, the optical head was firmly placed using stereotaxic apparatus upon the sagittal line of anaesthetised adult rat's head, without any surgery. Then pharmacological treatments with saline (300μl s.c.) amphetamine (2mg/kg) or nicotine (0.4mg/kg) were performed. Within 10-20 min amphetamine substantially increased HbO2 and reduced Hb control levels. Nicotine produced a rapid initial increase followed by a decrease of HbO2. In contrast to amphetamine, nicotine treatment also reduced Hb and blood volume. These results support the capacity of our CW-NIR prototype to measure non-invasively HbO2 and Hb levels in the rat brain, markers of the degree of tissue oxygenation, index of blood level then of the state of brain metabolism.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.