The inspection of technical surfaces is often performed by two-wavelength electronic speckle-pattern interferometry (ESPI) combined with a phase-shifting procedure. As in conventional specular interferometry, the characteristic fringe spacing in the generated interferogram is defined by the applied wavelengths and the sensitivity is therefore constant in one fringe pattern. Subsequently, this technique is limited to surface structures with similar phase gradients and low structural density. To measure more complex structures, a high-resolution generated reference wavefront (HRGW) is adapted to the measurement object for local sensitivity adaption. The feasibility of this principle is directly linked to the functionality of the used spatial light modulator (SLM). A key factor of a proper phase-control is the structural setup of the SLM. In this article, the general influence of the microstructure of SLMs in adaptive ESPI is evaluated.
Conference Committee Involvement (7)
Automated Visual Inspection and Machine Vision VI
23 June 2025 | Munich, Germany
Automated Visual Inspection and Machine Vision V
28 June 2023 | Munich, Germany
Automated Visual Inspection and Machine Vision IV
21 June 2021 | Online Only, Germany
Automated Visual Inspection and Machine Vision III
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.