Cladding waveguides have been realized in Nd:YAG by direct writing with a femtosecond-laser beam. A classical
method that inscribes many tracks around the waveguide circumference with step-by-step translations of the laser
medium, and a new technique in which the laser medium is moved on a helical trajectory and that delivers waveguides
with well-defined walls were employed. Laser emission on the 1.06 μm 4F3/2→4I11/2 transition and at 1.3 μm on the
4F3/2→4I13/2 line was obtained under the pump with a fiber-coupled diode laser. Thus, laser pulses at 1.06 μm with energy
of 1.3 mJ for the pump at 807 nm with pulses of 12.5-mJ energy were recorded from a circular waveguide of 100-μm
diameter that was inscribed in a 5-mm long, 0.7-at.% Nd:YAG single crystal by the classical translation technique. A
similar waveguide that was realized in a 5-mm long, 1.1-at.% Nd:YAG ceramic increased the 1.06-μm laser pulse energy
to 2.15 mJ for the pump pulses of 13.1-mJ energy. Furthermore, a circular waveguide of 100-μm diameter that was
inscribed in the Nd:YAG ceramic by the helical-movement method yielded pulses at 1.06 μm with increased maximum
energy of 3.2 mJ; the overall optical-to-optical efficiency was 0.24, and the laser operated with a slope efficiency of 0.29.
The same device outputted laser pulses at 1.3 μm with energy of 1.15 mJ.
Laser pulses at 1.06 μm with 2.5-mJ energy and 3.1-MW peak power have been obtained from a composite, all polycrystalline ceramics, passively Q-switched 1.1-at.% Nd:YAG/Cr4+:YAG laser that was quasi-continuous-wave pumped with diode lasers. Single-pass frequency doubling with LiB3O5 nonlinear crystal at room temperature yielded green laser pulses at 532 nm with energy of 0.36-mJ and 0.45-MW peak power; the infrared-to-green conversion efficiency was 0.27.
Conference Committee Involvement (1)
International Student Workshop on Laser Applications 2011
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.