Source Mask Optimization (SMO) describes the co-optimization of the illumination source and mask pattern in the
frequency domain. While some restrictions for manufacturable sources and masks are included in the process, the
resulting photomasks do not resemble the initial designs. Some common features of SMO masks are that the line edges
are heavily fragmented, the minimum design features are small and there is no one-to-one correspondence between
design and mask features. When it is not possible to link a single mask feature directly to its resist counterpart,
traditional concepts of mask defects no longer apply and photomask inspection emerges as a significant challenge. Aerial
Plane Inspection (API) is a lithographic inspection mode that moves the detection of defects to the lithographic plane.
They can be deployed to study the lithographic impact of SMO mask defects. This paper briefly reviews SMO and the
lithography inspection technologies and explores their applicability to 22nm designs by presenting SMO mask
inspection results. These results are compared to simulated wafer print expectations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.