In this work Monte Carlo (MC) simulations are used to correct kilovoltage (kV) cone-beam computed tomographic (CBCT) projections for scatter radiation. All images were acquired using a kV CBCT bench-top system composed of an x-ray tube, a rotation stage and a flat-panel imager. The EGSnrc MC code was used to model the system. BEAMnrc was used to model the x-ray tube while a modified version of the DOSXYZnrc program was used to transport the particles through various phantoms and score phase space files with identified scattered and primary particles. An analytical program was used to read the phase space files and produce image files. The scatter correction was implemented by subtracting Monte Carlo predicted scatter distribution from measured projection images; these projection images were then reconstructed. Corrected reconstructions showed an important improvement in image quality. Several approaches to reduce the simulation time were tested. To reduce the number of simulated scatter projections, the effect of varying the projection angle on the scatter distribution was evaluated for different geometries. It was found that the scatter distribution does not vary significantly over a 30-degree interval for the geometries tested. It was also established that increasing the size of the voxels in the voxelized phantom does not affect the scatter distribution but reduces the simulation time. Different techniques to smooth the scatter distribution were also investigated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.