KEYWORDS: Polarization, Signal detection, Magnetometers, Magnetism, Sensors, Magnetic sensors, Signal to noise ratio, Resonance enhancement, Explosives, Nitrogen
Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.
KEYWORDS: Electromagnetic coupling, Land mines, Amplifiers, Antennas, Sensors, Signal to noise ratio, Mining, Magnetism, Control systems, Data acquisition
Advances in the engineering of Quadrupole Resonance (QR) sensors for landmine detection have resulted in improved performance, as well as massive reductions in power, size and weight. The next generation of vehicle-mounted QR confirmation sensors is over an order of magnitude smaller and more power efficient than the system fielded in 2002 and 2003. Early prototypes have also demonstrated a significant improvement in TNT sensitivity, and similar improvements are anticipated in RDX sensitivity during Q1 2005. Blind test results from 2003 confirm the radio frequency interference and piezo-electric ringing immunity of the Quantum Magnetics QR Confirmation Sensor (QRCS).
KEYWORDS: Electromagnetic coupling, Antennas, Sensors, Data modeling, Land mines, Signal detection, Mining, Signal to noise ratio, Signal processing, Finite impulse response filters
The quadrupole resonance (QR) technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives (e.g., TNT and RDX) within the mine. We focus herein on the detection of TNT via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs). Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. By taking advantage of the spatial correlation of the RFIs received by the antenna array, the RFIs can be reduced significantly. However, the RFIs are usually colored both spatially and temporally and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlation of the RFIs to improve the TNT detection performance. First, we consider exploiting the spatial correlation of the RFIs only and propose a maximum likelihood (ML) estimator for parameter estimation and a constant false alarm rate (CFAR) detector for TNT detection. Second, we adopt a multichannel autoregressive model to take into account the temporal correlation of the RFIs and devise a detector based on the model. Third, we take advantage of the temporal correlation by using a two-dimensional robust Capon beamformer (RCB) with the ML estimator for improved RFI mitigation. Finally, we combine the merits of all of the three aforementioned approaches for TNT detection. The effectiveness of the combined method is demonstrated using the experimental data collected by Quantum Magnetics, Inc.
Geoffrey Barrall, Kevin Derby, Adam Drew, Konstantine Ermolaev, Shouqin Huo, Daniel Lathrop, Todor Petrov, Matthew Steiger, Stanley Stewart, Peter Turner
Quantum Magnetics has developed a Quadrupole Resonance (QR) system for the detection of anti-tank and anti-vehicle landmines. The QR confirmation sensor (QRCS) is a part of the Army GSTAMIDS Block 1 program and is designed to confirm the presence of landmines initially flagged by a primary sensor system. The ultimate goal is to significantly reduce the number of sites that require neutralization or other time consuming investigation into the presence of a landmine. Government tests in 2002 and 2003 demonstrated the performance of the system in a wide variety of conditions including high radio frequency interference (RFI) and piezo electric ringing (PER) environments. Field test results are presented along with an overall description of the system design and methods used to solve prior issues with RFI and PER.
Andrew Hibbs, Geoffrey Barrall, Simon Beevor, Lowell Burnett, K. Derby, A. Drew, David Gregory, C. Hawkins, S. Huo, A. Karunaratne, Daniel Lathrop, Young Lee, Robert Matthews, Steve Milberger, B. Oehmen, T. Petrov, David Skvoretz, S. Vierkoetter, David Walsh, Chin Wu
KEYWORDS: Land mines, Mining, Metals, Explosives, Signal detection, Prototyping, Electromagnetic coupling, Molybdenum, Signal to noise ratio, Fourier transforms
We report on field test results conducted during 1999 in Bosnia and at the Army Mine Training School, Fort Leonard Wood, MO, on a ne prototype landmine detection system. In all test, non-metallic, anti-personnel (AP) and anti-tank (AT) landmines were detected via the NQR explosive signature with a probability of detection of 100 percent. The initial false alarm rate for the AP mine test was < 5 percent and was reduced to zero by a subsequent remeasurement. The test included typical burial depths and a variety of ground and weather conditions. In addition, the system can tolerate very high levels of metallic clutter and has repeatedly achieved zero false alarm rate when scanning for buried explosives at an EOD test range.
Nuclear Quadrupole Resonance (NQR) combines the compound specific detection capability offered by chemical offered by chemical detection techniques with the spatial coating capability and convenience of an induction coil metal detector. In this paper we present the first results of the detection of TNT by NQR with sufficient for detection of many antipersonnel mines and essentially all antitank mines. In addition, we review the result of a blind in-field demonstration of the system in detecting RDX in which 28 out of 31 RDX-only targets were found with 1 false alarm in a 110 m test lane, and a second test in which 21 out of 21 RDX mines were found with zero false alarms at a clearance rate of 1.1 m2 per minute.
KEYWORDS: Sensors, Land mines, Electromagnetic coupling, Detection and tracking algorithms, Signal to noise ratio, Explosives, Signal processing, Antennas, Magnetism, Signal detection
Nuclear quadrupole resonance (NQR) is a technique that discriminates mines from clutter by exploiting unique properties of explosives, rather than the attributes of the mine that exist in many forms of anthropic clutter. After exciting the explosive with a properly designed electromagnetic-induction (EMI) system, one attempts to sense late-time spin echoes, which are characterized by radiation at particular frequencies. It is this narrow-band radiation that indicates the presence of explosives, since this effect is not seen in most clutter, both natural and anthropic. However, this problem is complicated by several issues. First, the late-time radiation if often very weak, particularly for TNT, and therefore the signal-to-noise ratio must be high for extracting the NQR response. Further, the frequency at which the explosive radiates is often a strong function of the background environment, and therefore in practice the NQR radiation frequency is not known a priori. Finally, at the frequencies of interest, there is a significant amount of background radiation, which induces radio frequency interference (RFI). In this paper we discuss several signal processing tools we have developed to enhance the utility of NQR explosives detection. In particular, with regard to the RFI, we exposure least-mean-squares algorithms which have proven well suited to extracting background interference. Algorithm performance is assessed through consideration of actual measured data. With regard to the detection of the NQR electromagnetic echo, we consider a Bayesian discrimination algorithm. The performance of the Bayesian algorithm is presented, again using measured NQR data.
Nuclear Quadrupole Resonance (NQR) combines the compound specific detection capability offered by chemical detection techniques with the spatial localization capability and convenience of an induction coil metal detector. In the 16 years since NQR was last applied to mine detection in the U.S., there has been considerable improvement in the basic techniques. This paper reviews the progress achieved under a recent initiative to detect landmines by NQR. Two basic technical developments are summarized: the design of a detection coil suitable for probing the ground for landmines buried at typical depths, and an increase in the NQR signal obtained from the explosive TNT. In addition, we report the sensitivity of an NQR detection system to detect the electromagnetic response of metal-cased landmines.
KEYWORDS: Explosives, Land mines, Wavelets, Sensors, Image filtering, Signal processing, Signal detection, Explosives detection, Signal to noise ratio, Feature extraction
Nuclear Quadrupole Resonance (NQR) is effective for the detecting and identification of certain types of explosives such as RDX, PETN and TNT. In explosive detection, the NQR response of certain 14N nuclei present in the crystalline material is proved. The 14N nuclei possess a nuclear quadrupole moment which in the presence of an electric field gradient produces an energy level splitting which may be excited by radio-frequency magnetic fields. Pulsing on the sample with a radio signal of the appropriate frequency produces a transient NQR response which may then be detected. Since the resonant frequency is dependent upon both the quadrupole moment of the 14N nucleus and the nature of the local electric field gradients, it is very compound specific. Under DARPA sponsorship, the authors are using multiresolution methods to investigate the enhancement of operation of NQR explosives detectors used for mine detection. For this application, NQR processing time must be reduced to less than one second. False alarm response due to acoustic and piezoelectric ringing must be suppressed. Also, as TNT is the most prevalent explosive found in land mines NWR detection of TNT must be made practical despite unfavorable relaxation times. All three issues require improvement in signal-to-noise ratio, and all would benefit from improved feature extraction. This paper reports some of the insights provided by multiresolution methods that can be used to obtain these improvements. It includes results of multiresolution analysis of experimentally observed NQR signatures for RDX response and various false alarm signatures in the absence of explosive compounds.
Sankaran Kumar, W. Casey McMichael, Y.-W. Kim, Alan Sheldon, Erik Magnuson, L. Ficke, T. Chhoa, C. Moeller, Geoffrey Barrall, Lowell Burnett, Peter Czipott, J. Pence, David Skvoretz
A particularly disturbing development affecting transportation safety and security is the increasing use of terrorist devices which avoid detection by conventional means through the use of liquid explosives and flammables. The hazardous materials are generally hidden in wine or liquor bottles that cannot be opened routinely for inspection. This problem was highlighted by the liquid explosives threat which disrupted air traffic between the US an the Far East for an extended period in 1995. Quantum Magnetics has developed a Liquid Explosives Screening systems capable of scanning unopened bottles for liquid explosives. The system can be operated to detect specific explosives directly or to verify the labeled or bar-coded contents of the container. In this system, magnetic resonance (MR) is used to interrogate the liquid. MR produces an extremely rich data set and many characteristics of the MR response can be determined simultaneously. As a result, multiple MR signatures can be defined for any given set of liquids, and the signature complexity then selected according to the level of threat. The Quantum Magnetics Liquid Explosives Screening System is currently operational. Following extensive laboratory testing, a field trial of the system was carried out at the Los Angeles International Airport.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.