Agricultural robots can tackle harsh working conditions and hardness of work, as well as the shortage of laborers that is a bottleneck to agricultural production. Such robots exist, but they are not yet widespread. We believe that the limited usage of robotics in agriculture could be related to the fact that the mainstream direction for robotics in agriculture is full automation. The teleoperation of an agricultural robotic system can enable improved performance overcoming the complexity that current autonomous robots face due to the dynamic and unstructured agricultural environment. A field study was conducted to evaluate eight different user interfaces aiming to determine the factors that should be taken into consideration by designers while developing user interfaces for robot teleoperation in agriculture. Thirty participants, including farmers and agricultural engineers, were asked to use different teleoperation interaction modes in order to navigate the robot along vineyard rows and spray grape clusters. Based on our findings, additional views for target identification and peripheral vision improved both robot navigation (fewer collisions) and target identification (sprayed grape clusters). In this paper, we discuss aspects of user interface design related to remote operation of an agricultural robot.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.