LEONARDO SpA is leading an Italian Space Industry Team, funded by ASI, collaborating to the ESA mission PLATO (PLAnetary Transits and Oscillation of stars). Its aim is the study of extrasolar planetary systems, with a focus on the discovery of exo-planets hosted by bright, nearby stars. PLATO is composed by 26 fully dioptric designed cameras, each composed of a telescope optical unit (TOU) and a focal plane array (FPA). The FPA is integrated with the TOU at ambient temperature by other Partners of the PLATO CAM-Team, although we determine the best image plane (BIP) of each TOU during test at cryo-vacuum operative conditions. This poses a metrology challenge at TOU manufacturing and testing facilities, with relatively high production rate of the flight units. At cold temperature (-80°C), the orientation and location of the FPA is found out as the BIP, meanwhile at ambient temperature, them are co-registered by using Hartmann masks. The results of this approach show a correspondence between the two analysis methods and give an input for subsequent FPA integration at PLATO CAM level.
Leonardo SpA is leading an Italian Space Industry Team, funded by ASI, collaborating to the ESA mission PLATO program for the realization of the 26 telescopes, which will fly on a single platform, aimed to discover, observe and analyze the exoplanets. The mission is based on a challenging telescope design with peculiar optical performance to be assured at very low operative temperature (-80°C). The “large” number of telescopes, produced in high rate (up to 3 telescopes every 2 months), is quite unusual for the production of scientific payloads. It has imposed a change with respect the prototypical manufacturing and test approach, generally a few flight units for space equipment, addressing the implementation of smart and fast methodologies for aligning and focusing each telescope, based on simulation of the peculiar “as-built” data. The opto-mechanical design of the telescope has been optimized to implement an industrial approach for all the manufacturing, assembly, integration and test (MAIT) phases. The number, production rate and the performance results of the flight units so far delivered by Leonardo to the PLATO Consortium, are validating the selected design solutions and all the selected MAIT processes. All the units already delivered present very similar performance, full specs and very close to the theoretical design.
Within the ESA PLATO M3 mission, the Telescope Optical Unit (TOU), i.e. the opto-mechanical unit, is a fully refractive optical system. The 26 TOU Flight Models (FM) to be delivered to the upper level, the PLATO Camera, make it a series production. The first Flight Models production faced many initial challenges from a Product Assurance point of view, mostly related to MAIT activities, while moving forward these challenges decreased. Discrepancies and nonconformities associated with, mainly, but not only, materials and processes, cleanliness and contamination control, safety, qualifications and validations, are the object of this proceeding. Thus, showing that serial production adds one more variable to possible failures, but at the same time, when root causes are corrected and solved, yields less difficulties in subsequent FMs MAIT and final production. Product Assurance, in monitoring the product in failure-proofing aspects, aims at mitigating criticalities and arranging for corrective and preventive actions that allow improving the likelihood of success of the mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.