The abbey’s church of Chaalis, in the North of Paris, was founded by Louis VI as a Cistercian monastery on 10th January 1137. In 2013, in the frame the European Commission's 7th Framework Program project CHARISMA [grant agreement no. 228330] the chapel was used as a practical case-study for application of the work done in a task devoted to best practices in historical buildings and monuments. In the chapel, three areas were identified as relevant. The first area was used to make an exercise on diagnosis of the different deterioration patterns. The second area was used to analyze a restored area. The third one was selected to test some hypotheses on the possibility of using the portable instruments to answer some questions related to the deterioration problems. To inspect this area, different tools were used:
-Visible fluorescence under UV,
- THz system,
- Stimulated Infra-Red Thermography, SIRT
- Digital Holographic Speckle Pattern Interferometry, DHSPI
- Condition report by conservator-restorer.
The complementarity and synergy offered by the profitable use of the different integrated tools is clearly shown in this practical exercise.
We systematically examined the mid-20th century Italian painting "After Fishing" (fig. 1) by Ausonio Tanda using multi-spectral (UV, RGB visible, tri-band IR), x-ray and terahertz time-domain spectroscopic imaging. THz-TDSI was performed in both transmission and reflection geometries and the results were compared.
Terahertz (THz) spectroscopy and imaging is a non-destructive, non-contact, non-invasive technology emerging as a tool
for the analysis of cultural heritage. THz Time Domain Spectroscopy (TDS) techniques have the ability to retrieve
information from different layers within a stratified sample, that enable the identification of hidden sub-layers in the case
of paints and mural paintings.
In this paper, we present the THz TDS2 system developed in the European Commission's 7th Framework
Program project CHARISMA [grant agreement no. 228330]. Bespoke single processing algorithms; including a
deconvolution algorithm can be deployed to increase the resolution and the global performance of the system. The
potential and impact of this work is demonstrated through two case studies of mural paintings, where the capability to
reveal the stratigraphy of the artworks is demonstrated.
Terahertz (THz) radiation is being developed as a tool for the analysis of cultural heritage, and due to recent advances in technology is now available commercially in systems which can be deployed for field analysis. The radiation is capable of penetrating up to one centimetre of wall plaster and is delivered in ultrafast pulses which are reflected from layers within this region. The technique is non-contact, non-invasive and non-destructive. While sub-surface radar is able to penetrate over a metre of wall plaster, producing details of internal structures, infrared and ultraviolet techniques produce information about the surface layers of wall plaster. THz radiation is able to provide information about the interim region of up to approximately one centimetre into the wall surface. Data from Chartres Cathedral, France, Riga Dome Cathedral, Latvia, and Chartreuse du Val de Bénédiction, France is presented each with different research questions. The presence of sub-surface paint layers was expected from documentary evidence, dating to the 13th Century, at Chartres Cathedral. In contrast, at the Riga Dome Cathedral surface painting had been obscured as recently as 1941 during the Russian occupation of Latvia using white lead-based paint. In the 13th Century, wall paintings at the Chapel of the Frescos, Chartreuse du Val de Benediction in Villeneuve les Avignon were constructed using sinopia under-painting on plaster covering uneven stonework.. This paper compares and contrasts the ability of THz radiation to provide information about sub-surface features in churches and Cathedrals across Europe by analysing depth based profiles gained from the reflected signal.
Terahertz pulse imaging (TPI) is a novel noncontact, nondestructive technique for the examination of cultural heritage
artifacts. It has the advantage of broadband spectral range, time-of-flight depth resolution, and penetration through
optically opaque materials. Fiber-coupled, portable, time-domain terahertz systems have enabled this technique to move
out of the laboratory and into the field. Much like the rings of a tree, stratified architectural materials give the
chronology of their environmental and aesthetic history. This work concentrates on laboratory models of stratified
mosaics and fresco paintings, specimens extracted from a neolithic excavation site in Catalhoyuk, Turkey, and
specimens measured at the medieval Eglise de Saint Jean-Baptiste in Vif, France. Preparatory spectroscopic studies of
various composite materials, including lime, gypsum and clay plasters are presented to enhance the interpretation of
results and with the intent to aid future computer simulations of the TPI of stratified architectural material. The breadth
of the sample range is a demonstration of the cultural demand and public interest in the life history of buildings. The
results are an illustration of the potential role of TPI in providing both a chronological history of buildings and in the
visualization of obscured wall paintings and mosaics.
KEYWORDS: Terahertz radiation, Signal to noise ratio, Wavelets, Spectroscopy, Statistical modeling, System identification, Absorption, Signal processing, Signal attenuation, Classification systems
This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their
respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain
signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range
of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain
signatures to generate the data sets that are presented to the classifier for both learning and validation purposes.
This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements
assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex
insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background
spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and
between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three
classes can be distinguished within the frequency range 0.1 - 1.0 THz using the above algorithms.
Terahertz (THz) radiation is being studied as an investigative tool for skin conditions. Two approaches for describing the propagation of THz radiation through skin are presented and verified using a layered water-based phantom. The skin was assumed to comprise a series of layers of tissue with differing, frequency dependent, properties; the major interaction was assumed to be between THz radiation and water. Based on these assumptions a thin film matrix model and a Monte Carlo model were developed to simulate this situation. In order to test these models, a simple three layer in-vitro phantom was used. This consisted of two 2 mm layers of TPX, encasing a 180 micrometer layer of a water/propanol-1 mixture. Spectroscopic measurements were made in a pulsed THz system for cells with thirteen different water/propanol-1 concentrations. Comparisons between the results from both models and experimental spectra show good correlation, in each case the model was able to simulate the overall trend of the spectra and more detailed features. This suggests that the models may be adapted to investigate THz irradiation of skin. Modeling modifications would include using layer dimensions that were comparable to the constituent layers of skin and using additional layers to describe the organ more thoroughly.
The first demonstrations of terahertz imaging in biomedicine were made several years ago, but few data are available on the optical properties of human tissue at terahertz frequencies. A catalogue of these properties has been established to estimate variability and determine the practicality of proposed medical applications in terms of penetration depth, image contrast and reflection at boundaries. A pulsed terahertz imaging system with a useful bandwidth 0.5-2.5 THz was used. Local ethical committee approval was obtained. Transmission measurements were made through tissue slices of thickness 0.08 to 1 mm, including tooth enamel and dentine, cortical bone, skin, adipose tissue and striated muscle. The mean and standard deviation for refractive index and linear attenuation coefficient, both broadband and as a function of frequency, were calculated. The measurements were used in simple models of the transmission, reflection and propagation of terahertz radiation in potential medical applications. Refractive indices ranged from 1.5 ± 0.5 for adipose tissue to 3.06 ± 0.09 for tooth enamel. Significant differences (P < 0.05) were found between the broadband refractive indices of a number of tissues. Terahertz radiation is strongly absorbed in tissue so reflection imaging, which has lower penetration requirements than transmission, shows promise for dental or dermatological applications.
Terahertz (THz) radiation has a frequency of the order of 101212 Hz. This lies between the infrared and microwave regions of the electromagnetic spectrum; a section labeled the 'THz gap'. Infrared and microwave radiation is used in the medical field; research is underway for an application for THz radiation. At present no formal safety analysis of a THz pulsed imaging (TPI) system has been performed. This will be necessary for future in vivo studies. The radiation is delivered in a train of femtosecond pulses. International guidelines on exposure to non-ionizing radiation, and supporting literature, were reviewed to determine the Maximum Permissible Exposure (MPE) for radiation of this range of wavelengths, both for a single pulse and continuous wave exposure. Two methods of deriving the MPE were identified. Current guidelines for infrared and microwave regions of the electromagnetic spectrum incorporate the THz region. Using conservative parameter estimation an MPE per pulse, over the area of the beam, of 94 W was calculated. At present THz pulsed imaging systems produce pulses of power approximately 1 mW; this lies within the limit calculated using the published guidelines. There are, however, areas requiring further investigation before the technique becomes routine in clinical practice.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.