A mechanically switchable solid inhomogeneous phantom simulating localized absorption changes was developed and characterized. The homogeneous host phantom was made of epoxy resin with black toner and titanium dioxide particles added as absorbing and scattering components, respectively. A cylindrical rod, movable along a hole in the block and made of the same material, has a black polyvinyl chloride cylinder embedded in its center. By varying the volume and position of the black inclusion, absorption perturbations can be generated over a large range of magnitudes. The phantom has been characterized by various time-domain diffuse optics instruments in terms of absorption and scattering spectra, transmittance images, and reflectance contrast. Addressing a major application of the phantom for performance characterization for functional near-infrared spectroscopy of the brain, the contrast was measured in reflectance mode while black cylinders of volumes from ≈20 mm3 to ≈270 mm3 were moved in lateral and depth directions, respectively. The new type of solid inhomogeneous phantom is expected to become a useful tool for routine quality check of clinical instruments or implementation of industrial standards provided an experimental characterization of the phantom is performed in advance.
We propose a simple and reliable solid phantom for mimicking realistic localized absorption changes within a diffusive medium. The phantom is based on a solid matrix holding a movable black inclusion embedded in a rod. Translating the rod parallel to the phantom surface, the inhomogeneity can be positioned beneath the source-detector pair (perturbed case) or far from it (unperturbed case). Examples of time-resolved transmittance measurements and time-resolved reflectance scans are shown to demonstrate the properties and the versatility of the phantom.
A retrospective pilot clinical study on time domain multi-wavelength (635 to 1060 nm) optical mammography was exploited to assess collagen as a breast-cancer risk factor on a total of 109 subjects (53 healthy and 56 with malignant lesions). An increased cancer occurrence is observed on the 15% subset of patients with higher age-matched collagen content. Further, a similar clustering based on the percentage breast density leads to a different set of patients, possibly indicating collagen as a new independent breast cancer risk factor. If confirmed statistically and on larger numbers, these results could have huge impact on personalized diagnostics, health care systems, as well as on basic research.
Time domain multi-wavelength (635 to 1060 nm) optical mammography was performed on 82 subjects with breast lesions (45 malignant and 38 benign lesions). A perturbative approach based on the high-order calculation of the pathlength of photons inside the lesion was applied to estimate differences between lesion and average healthy tissue of the same breast in terms of: i) absorption properties, and ii) concentration of the major tissue constituents (oxy- and deoxy-hemoglobin, water, lipid and collagen). The absorption difference Δμa between lesion and healthy tissue is significantly different for malignant vs. benign lesions at all wavelengths. Logistic regression fitted to the absorption data identifies 975 nm as the key wavelength to discriminate malignant from benign lesions. When the difference in tissue composition between lesion and healthy tissue is considered, malignant lesions are characterized by significantly higher collagen content than benign lesions. Also the best model for the discrimination of malignant lesions obtained applying regression logistic to tissue composition is based only on collagen. Including demographic information into the model improves its specificity.
Time domain multi-wavelength (635 to 1060 nm) optical mammography was performed on 200 subjects to estimate their average breast tissue composition in terms of oxy- and deoxy-hemoglobin, water, lipid and collagen, and structural information, as provided by scattering parameters (amplitude and power). Significant (and often marked) dependence of tissue composition and structure on age, menopausal status, body mass index, and use of oral contraceptives was demonstrated.
Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.
We propose a simple and reliable solid phantom for mimicking localized absorption changes within a diffusive medium. The phantom is based on the Equivalence Relation stating that any realistic absorption inhomogeneity can be mimicked by a totally absorbing sphere of adequate volume. Applying this concept, we constructed a solid phantom holding a movable black inclusion to be positioned beneath the source-detector pair (perturbed case) or far from it (unperturbed case). Different absorption perturbations can be mimicked by changing the volume and the position of the black object both in transmittance and reflectance configuration. Time-resolved measurements of transmittance images and a lateral reflectance scan are presented.
A time-domain multiwavelength (635 to 1060 nm) optical mammography was performed on 147 subjects with recent x-ray mammograms available, and average breast tissue composition (water, lipid, collagen, oxy- and deoxyhemoglobin) and scattering parameters (amplitude a and slope b ) were estimated. Correlation was observed between optically derived parameters and mammographic density [Breast Imaging and Reporting Data System (BI-RADS) categories], which is a strong risk factor for breast cancer. A regression logistic model was obtained to best identify high-risk (BI-RADS 4) subjects, based on collagen content and scattering parameters. The model presents a total misclassification error of 12.3%, sensitivity of 69%, specificity of 94%, and simple kappa of 0.84, which compares favorably even with intraradiologist assignments of BI-RADS categories.
KEYWORDS: Lung, Absorption, Monte Carlo methods, Tissue optics, Chest, In vivo imaging, Optical properties, Scattering, Optical spectroscopy, Reflectivity
Monte Carlo simulations and preliminary time-resolved spectroscopy measurements were performed to investigate the feasibility of the in vivo optical diagnostics of lung conditions and diseases. Absorption and reduced scattering properties of the chest, arising from in vivo spectral measurements on volunteers are presented.
Three recipes for tissue constituent-equivalent phantoms of water and lipids are presented. Nature phantoms are made using no emulsifying agent, but just a professional disperser, instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and lipids. Different water-to-lipid ratios ranging from 30 to 70 percent by mass are proposed and tested. Optical characterization by time-resolved spectroscopy was performed in terms of optical properties, homogeneity, reproducibility and composition retrieval.
Subjects at high risk for developing breast cancer for their high breast density can be effectively identified fitting a logistic regression model to time-resolved multi-wavelength optical data.
Breast density is a major risk factor for developing breast cancer. Non-invasive assessment of breast density was
performed by means of time-resolved 7-wavelength (635-1060 nm) optical mammography. Good correlation was
achieved between mammographic density and optically derived indexes in a clinical study that is presently ongoing and
that has involved 63 subjects up to now.
Breast density is a recognized strong and independent risk factor for breast cancer. We propose the use of time-resolved transmittance spectroscopy to estimate breast tissue density and potentially provide even more direct information on breast cancer risk. Time-resolved optical mammography at seven wavelengths (635 to 1060 nm) is performed on 49 subjects. Average information on breast tissue of each subject is obtained on oxy- and deoxyhemoglobin, water, lipids, and collagen content, as well as scattering amplitude and power. All parameters, except for blood volume and oxygenation, correlate with mammographic breast density, even if not to the same extent. A synthetic optical index proves to be quite effective in separating different breast density categories. Finally, the estimate of collagen content as a more direct means for the assessment of breast cancer risk is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.