This study aims at improving the spatial resolution of snow depth (SD) products derived from microwave satellite radiometers by proposing a disaggregation method based on X-band SAR data. The method has been developed and tested in the western part of Italian Alps, by involving Cosmo SkyMed (CSK) and AMSR-2 data. Machine learning methods play a twofold role in the proposed active/passive (A/P) implementation: the AMSR-2 data disaggregation process is indeed based on Artificial Neural Networks (ANN), while the SD retrieval using the disaggregated data is based on ANN and Random Forest (RF) algorithms. To assess the effectiveness of the proposed A/P technique, the SD retrievals have been compared with those obtained by estimating SD directly from CSK data. Taking advantage of the multifrequency information, the retrievals based on A/P method clearly outperformed those based on CSK data only: correlation increased from R=0.77 to R= 0.85 for the ANN based retrievals and from 0.76 to 0.86 for the RF based retrievals. The corresponding RMSE decreases from 34cm to 28cm and from 34cm to 27cm for ANN and RF, respectively, in a SD range between 0 and ≃220cm.
In recent years, the possibility of estimating Soil Moisture (SM) at different resolution scales improved greatly with the launch of the latest satellite microwave sensors and in particular of the Soil Moisture Active and Passive (SMAP) radar + radiometer and Sentinel-1 (S-1) Synthetic Aperture Radar (SAR). However, the tradeoff between temporal and spatial resolution offered by each of these two sensors is still unable to meet the requirements of many users. The SM SMAP products are available through the NSIDC data portal at resolution varying between 1 and 36 Km [1, 2].
This study exploited the possibility of merging SMAP, S-1 and COSMO-SkyMed X-band SAR (CSK) data through Artificial Neural Networks (ANN) for obtaining SM products at high spatial resolution, with the aim of evaluating the benefits of assimilating higher resolution SM into hydrological models.
The algorithm has been implemented and validated on a test area in Tuscany (Val d’Elsa, center coordinates of Ponte a Elsa: 43°41′20.37″N 10°53′42.38″E), in central Italy. The area is characterized by a partially hilly landscape, including agricultural and urban areas areas and forests, with heterogeneities that set important constraints to the potential of SMAP observations for SM monitoring.
The SMAP, S-1 and CSK acquisitions available between 2019 and 2020 on the area have been considered for the algorithm development. The reference SM values for validation purposes have been derived from in-situ observations carried out in the framework of the ASI ‘Algoritmi’ project [3], which also provided the CSK images considered in this study.
The improvement of spatial resolution of the output SMC product is still under investigation; however, the preliminary results seem showing that the method is able to map SM from the SMAP, S-1 and CSK synergy at a resolution better than 100m, with correlation coefficient R≃0.89 and RMSE≃0.025 m3/m3.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.