Optical insertion loss improvement is needed for high-speed, electrooptic polymer waveguide modulators. The insertion loss is mainly attributed to fiber end-coupling loss caused by mode mismatch between the fiber and the polymer waveguide. Three approaches of reducing end-coupling loss have been pursued: tapered waveguides, fiber tip lenses and modification of the waveguide structure. Tapered waveguides can be accomplished using Reactive Ion Etching (RIE) and shadow or gray-scale mask techniques. Experimental results have shown that the best coupling loss improvement up to 3 dB per end-coupling can be achieved by tapered waveguide. Fiber tip lens technique has been currently investigated for improving end-coupling loss. Preliminary testing results using fiber tip lenses have been encouraging showing a 1.5 - 3.5 dB improvement per end-coupling. The fiber tip lens technique provides a reliable and repeatable approach for loss reduction for high-speed polymer modulators. Modifying a highly asymmetric rib waveguide to a symmetric buried channel waveguide will greatly improve coupling efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.