A. Benz, S. Krucker, G. Hurford, N. Arnold, P. Orleanski, H.-P. Gröbelbauer, S. Klober, L. Iseli, H. Wiehl, A. Csillaghy, L. Etesi, N. Hochmuth, M. Battaglia, M. Bednarzik, R. Resanovic, O. Grimm, G. Viertel, V. Commichau, A. Meuris, O. Limousin, S. Brun, N. Vilmer, K. Skup, R. Graczyk, M. Stolarski, M. Michalska, W. Nowosielski, A. Cichocki, M. Mosdorf, K. Seweryn, A. Przepiórka, J. Sylwester, M. Kowalinski, T. Mrozek, P. Podgorski, G. Mann, H. Aurass, E. Popow, H. Önel, F. Dionies, S. Bauer, J. Rendtel, A. Warmuth, M. Woche, D. Plüschke, W. Bittner, J. Paschke, D. Wolker, H. Van Beek, F. Farnik, J. Kasparova, A. Veronig, I. Kienreich, P. Gallagher, D. Bloomfield, M. Piana, A. Massone, B. Dennis, R. Schwarz, R. Lin
The Spectrometer Telescope for Imaging X-rays (STIX) is one of 10 instruments on board Solar Orbiter, a confirmed Mclass mission of the European Space Agency (ESA) within the Cosmic Vision program scheduled to be launched in 2017. STIX applies a Fourier-imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 pixelized CdTe detectors to provide imaging spectroscopy of solar thermal and non-thermal hard X-ray emissions from 4 to 150 keV. The status of the instrument reviewed in this paper is based on the design that passed the Preliminary Design Review (PDR) in early 2012. Particular emphasis is given to the first light of the detector system called Caliste-SO.
Robert Lin, Gordon Hurford, Norman Madden, Brian Dennis, Carol Crannell, Gordon Holman, Reuven Ramaty, Tycho von Rosenvinge, Alex Zehnder, H. Frank van Beek, Patricia Bornmann, Richard Canfield, A. Gordon Emslie, Hugh Hudson, Arnold Benz, John Brown, Shinzo Enome, Takeo Kosugi, Nicole Vilmer, David Smith, Jim McTiernan, Isabel Hawkins, Said Slassi-Sennou, Andre Csillaghy, George Fisher, Chris Johns-Krull, Richard Schwartz, Larry Orwig, Dominic Zarro, Ed Schmahl, Markus Aschwanden, Peter Harvey, David Curtis, David Pankow, David Clark, Robert Boyle, Reinhold Henneck, Akilo Michedlishvili, Knud Thomsen, Jeff Preble, Frank Snow
The primary scientific objective of the High Energy Solar Spectroscopic Imager (HESSI) Small Explorer mission selected by NASA is to investigate the physics of particle acceleration and energy release in solar flares. Observations will be made of x-rays and (gamma) rays from approximately 3 keV to approximately 20 MeV with an unprecedented combination of high resolution imaging and spectroscopy. The HESSI instrument utilizes Fourier- transform imaging with 9 bi-grid rotating modulation collimators and cooled germanium detectors. The instrument is mounted on a Sun-pointed spin-stabilized spacecraft and placed into a 600 km-altitude, 38 degrees inclination orbit.It will provide the first imaging spectroscopy in hard x-rays, with approximately 2 arcsecond angular resolution, time resolution down to tens of ms, and approximately 1 keV energy resolution; the first solar (gamma) ray line spectroscopy with approximately 1-5 keV energy resolution; and the first solar (gamma) -ray line and continuum imaging,with approximately 36-arcsecond angular resolution. HESSI is planned for launch in July 2000, in time to detect the thousands of flares expected during the next solar maximum.
For the imaging of X-rays and gamma-rays above the energy of about 10 keV (wavelength shorter than 0.12 nanometer) lenses or mirrors cannot be used. For future X-ray and gamma- ray imaging instruments, configurations of patterns of slits and detectors are proposed where, with the help of Fourier analyses of the observed temporal and spatial radiation modulation, images can be composed with a spatial resolution in the arcsecond domain. The patterns of slits, called `grids', are difficult to realize because of the small slit width and the severe requirements on the slit position, given the required thickness of the material. Now these patterns of slits can be made, it has sense to investigate what other instruments or products could make use of this grid manufacturing technique. First of all, this paper describes in short the method of grid manufacturing dealt with here and the most significant characteristics of these grids. The technique allows for the manufacturing of similar grids, with other slit width, slit mutual distance, slit viewing direction, etc. The second part of this paper suggests some possible applications of grids that could be made with the same technique, for the field of medicine, crystallography and other fields. These suggestions may initiate other applications, not yet thought of.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.