Gain-switched mid-infrared 1 and 7 mol. % erbium-doped fluoride fiber lasers pumped at 1.7 μm were demonstrated. They delivered 2.8 μm pulsed laser with maximum average powers of 306 mW and 390 mW, respectively, corresponding to recorded laser efficiencies of 43.6% and 35.5%. This work exhibits the potential of the 1.7 μm pulsed pumping scheme for gain-switched 2.8 μm erbium-doped fluoride fiber lasers and this pumping scheme paves the way for high-efficient pulsed fiber lasers in the 3 μm region.
The image distortions caused by the inherent mode dispersion and coupling of the multimode fiber (MMF) lead its output light field to be scattered and prevent it from applicating in endoscopy. Although various wavefront shaping methods have been proposed to overcome these image distortions and form the focused spots through the MMF, they a re usually time-consuming due to the multiple iterations and tedious calculation. In this paper, we present a binary amplitude-only modulation parallel coordinate algorithm for focusing and scanning light through a multimode fiber (MMF) based on the digital micro-mirror device (DMD) in a reference-free multimode fiber imaging system. In principle, our algorithm is capable of efficiently calculating the masks to be added to DMD for yielding a series of tightly focused spots; and for the same number of modulation sub-regions, our method is more than M (the number of focused spots) times faster than the amplitude iterative optimization algorithm. In the experiment, efficient light focusing and scanning at the distal end of the MMF without the iteration process are demonstrated. Furthermore, we demonstrate that the proposed method can also be extended to focus and scan light at multiple planes along the axial direction by just modifying the input wavefront accordingly. We predict the high-speed focusing method through the MMF might have the potential application for fast spot-scanning imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.