KEYWORDS: Image segmentation, 3D image processing, Edge detection, Detection and tracking algorithms, Sensors, Image processing algorithms and systems, Reconstruction algorithms, Clouds, Data modeling, Algorithm development
Real-time execution of processing algorithms for handling depth images in a three-dimensional (3-D) data framework is a major challenge. More specifically, considering depth images as point clouds and performing planar segmentation requires heavy computation, because available planar segmentation algorithms are mostly based on surface normals and/or curvatures, and, consequently, do not provide real-time performance. Aiming at the reconstruction of indoor environments, the spaces mainly consist of planar surfaces, so that a possible 3-D application would strongly benefit from a real-time algorithm. We introduce a real-time planar segmentation method for depth images avoiding any surface normal calculation. First, we detect 3-D edges in a depth image and generate line segments between the identified edges. Second, we fuse all the points on each pair of intersecting line segments into a plane candidate. Third and finally, we implement a validation phase to select planes from the candidates. Furthermore, various enhancements are applied to improve the segmentation quality. The GPU implementation of the proposed algorithm segments depth images into planes at the rate of 58 fps. Our pipeline-interleaving technique increases this rate up to 100 fps. With this throughput rate improvement, the application benefit of our algorithm may be further exploited in terms of quality and enhancing the localization.
One of the major challenges for applications dealing with the 3D concept is the real-time execution of the algorithms. Besides this, for the indoor environments, perceiving the geometry of surrounding structures plays a prominent role in terms of application performance. Since indoor structures mainly consist of planar surfaces, fast and accurate detection of such features has a crucial impact on quality and functionality of the 3D applications, e.g. decreasing model size (decimation), enhancing localization, mapping, and semantic reconstruction. The available planar-segmentation algorithms are mostly developed using surface normals and/or curvatures. Therefore, they are computationally expensive and challenging for real-time performance. In this paper, we introduce a fast planar-segmentation method for depth images avoiding surface normal calculations. Firstly, the proposed method searches for 3D edges in a depth image and finds the lines between identified edges. Secondly, it merges all the points on each pair of intersecting lines into a plane. Finally, various enhancements (e.g. filtering) are applied to improve the segmentation quality. The proposed algorithm is capable of handling VGA-resolution depth images at a 6 FPS frame-rate with a single-thread implementation. Furthermore, due to the multi-threaded design of the algorithm, we achieve a factor of 10 speedup by deploying a GPU implementation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.