SignificancePhotoacoustic imaging is an emerging imaging modality that combines the high contrast of optical imaging and the high penetration of acoustic imaging. However, the strong focusing of the laser beam in optical-resolution photoacoustic microscopy (OR-PAM) leads to a limited depth-of-field (DoF).AimHere, a volumetric photoacoustic information fusion method was proposed to achieve large volumetric photoacoustic imaging at low cost.ApproachFirst, the initial decision map was built through the focus detection based on the proposed three-dimensional Laplacian operator. Majority filter-based consistency verification and Gaussian filter-based map smoothing were then utilized to generate the final decision map for the construction of photoacoustic imaging with extended DoF.ResultsThe performance of the proposed method was tested to show that our method can expand the limited DoF by a factor of 1.7 without the sacrifice of lateral resolution. Four sets of multi-focus vessel data at different noise levels were fused to verify the effectiveness and robustness of the proposed method.ConclusionsThe proposed method can efficiently extend the DoF of OR-PAM under different noise levels.
Phase technology is widely utilized in the field of optics. By applying phase technology, the required pattern can be obtained by remodeling the light field in the focal area of the objective lens, which has significant value in laser manufacturing, biomedicine and optical imaging. Gerchberg-Saxton algorithm is commonly used in imaging systems to restructure the light field, which is achieved by converting light intensity distribution of the Fourier plane optical field into the phase distribution on the focal plane through the inverse Fourier transform. Nevertheless, for a high numerical aperture objective lens, the accuracy of the relationship between the phase and the intensity of the light field may be compromised by depolarization effects, which causes the Fourier transform unable to accurately generate the required lattice pattern from the known light intensity distribution. To obtain the intensity of the light field and phase information during the optical transmission process from the rear focal plane to the front focal plane of the objective lens, we utilize the Debye diffraction in place of the Fourier transform in the Gerchberg-Saxton algorithm. Image skeletonization is a morphology-based image processing technology used to extract the backbone structure and shape information in the image, which extracts the main structure of the image and generates a more simplified representation by eliminating redundant information in the image. Image skeletonization technology has applications in many fields, including computer vision and medical image processing, among others. In this paper, we demonstrated the generation of lattice patterns from arbitrary images in the strong focusing of light field using Debye diffraction theory and image skeletonization technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.