Fused silica is an important optical material used in scientific research, industry and medical fields. In order to explore the mechanism of femtosecond laser damage in fused silica, a multi-physics coupling dynamics model was developed to obtain the transient dynamic behaviors of laser damage. It is found that the thermal wave and mechanical wave caused by initial energy deposition plays an important role in the crack formation near the laser irradiation area. The simulated evolution of laser damage is verified by the early transient images captured by the ultra-fast experimental detection system. This work provides further insights in explaining the laser-induced damage in fused silica.
Potassium dihydrogen phosphate (KDP) crystal has been regarded as the solely irreplaceable component in laser-driven
inertial confinement fusion (ICF) facilities. Nevertheless, the laser-induced damage on KDP crystal surfaces under highenergy
laser irradiation considerably restricts the output power of ICF facilities. The laser damage event on KDP surface
is an extremely complex process, among which the non-heat initial energy deposition is regarded as the major absorbed
energy source, determining the subsequent thermal damage process and final damage morphology. The initial energy
deposition process is a non-heat stage, where the plasmas are generated from ionization processes under intense laser
irradiation. However, there is still no available model that can well reproduce the dynamic interaction behaviors between
the high-energy laser and plasmas in the initial energy deposition process, resulting in the laser-induced damage
mechanisms on KDP crystal surface still not fully revealed. In this work, a Particle-In-Cell (PIC) model is established to
investigate the initial dynamic damage behaviors of KDP crystals under intense laser irradiation. On basis of this model,
the crater formation process and the particle ejection dynamics involved in the laser damage event are reproduced. The
reproduced characteristic parameters of laser damage craters on KDP input and output surfaces, and the obtained particle
ejection angles are consistent with the previously reported laser damage morphology, which verifies the effectiveness of
the established PIC model. This work could provide theoretical means for investigating the initial energy deposition
process and also offer further insights in understanding the laser-induced damage mechanisms of KDP crystal
components.
The potassium dihydrogen phosphate (KDP) crystals suffer from nanosecond pulse laser irradiation and are susceptible to damage during the operation of ICF system. In particular, the microcracks on the surface of KDP crystals caused by the single-point diamond fly-cutting (SPDF) process are more likely to cause serious damage under the subsequent laser irradiation. However, the mechanism of laser damage is still unclear. A model that can well represents the laser damage response is very important to reveal the mechanism of laser-induced damage. In this work, the electromagnetic field, stress field and temperature field are coupled, the mechanical characteristics of KDP material are considered, and the reasonable strength equation is applied to model the laser damage response of KDP crystal. Then, the conical crack is taken as an example to explore the laser damage response process of KDP crystal caused by surface defects under laser irradiation. It is found that the surface conical cracks have a great influence on the response process and the morphological characteristics of the laser damage. The existence of surface conical crack defects would lead to the extension of the longitudinal cracks beneath the damage crater, which has great disadvantages for the repairing of the laser damage sites. This work is of great guidance for avoiding the defects-induced damage and improving the service life of the crystal applied in ICF systems.
The issues of laser-induced damage of transparent dielectric optics severely limit the development of large laser systems. In order to explore the mechanism of nanosecond laser damage on KDP surface, a multi-physics coupling dynamics model and a time resolved detection system were developed to obtain the transient dynamic behaviors of laser damage. The behaviors of laser energy transmission, thermal field distribution and damage morphology during nanosecond laser irradiation on KDP surface were simulated. It is found that the enhancement of light intensity caused by surface defect plays an important role in the initial energy deposition and damage initiation of the laser irradiation area. The evolution of the temperature field and fluid flow during subsequent laser irradiation contributes to the laser damage process. The simulated evolution of heat absorption source is verified by the transient images of local defect-induced laser damage captured by the ultra-fast experimental detection system. This work provides further insights in explaining the laserinduced damage by surface defects on KDP crystals.
KEYWORDS: Modulation, Crystals, Diffraction, Laser induced damage, Optical components, Laser crystals, Micro cutting, Micromachining, Near field diffraction, High power lasers
Micro-machining has been proved the most effective method to mitigate the laser-induced surface damage growth on potassium dihydrogen phosphate (KDP) crystal in high power laser systems. However, the phase contrast of outgoing laser beam, introduced by the mitigated KDP surface, would cause light propagating turbulence and downstream intensification with the potential to damage downstream optics. In this work, a Gaussian mitigation pit with width of 800μm and depth of 10μm is fabricated on KDP rear surface by micro-milling. The effect of the mitigation pit on downstream light intensification is analyzed through propagation calculations based on Fresnel diffraction integral theory. The light intensity modulations reach a peak value at the position of 10mm downstream from the rear surface, decrease sharply subsequently and get stable eventually. The results indicate that the modulations induced by Gaussian mitigation pits would change with various downstream locations. It is essential to notice the unacceptable downstream intensification and reduce the risk of laser damage on other optics by choosing an appropriate installation location.
Micro-machining has been regarded as the most promising method to mitigate the laser damage growth on KDP/DKDP crystal surfaces. In this work, the near-field and far-field light modulations caused by three kinds of typical mitigation contours (spherical, Gaussian and conical) were theoretically investigated and compared to determine the optimal contours for achieving the minimum light intensification. Then, based on Computer Aided Manufacturing (CAM), a specific machining flow combining layer milling (rough repairing) and spiral milling (fine repairing) was developed to repair the surface damage with high efficiency and surface quality. Finally, the morphology, transmittance and laser damage resistance of the repaired KDP surfaces were tested. The theoretical and experimental results indicate that the conical mitigation contours mostly possess the best repaired surface quality and optical performance. The developed combined rough and fine machining flow could be applied as a practical repairing flow to mitigate the laser-induced surface damage growth of KDP crystal optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.