Tattoo-like sensors represent a class of emerging wearable devices that can be directly applied to flexible and stretchable surfaces, like the human skin, without causing any peeling and dusting. Currently, available tattoo sensors are typically applied through a thin metal coating or conducting particle infiltrated nanofibrous network, which would interfere with the users’ sense of touch. Herein, we report flexible tattoo-like sensor based on laser-induced reduced graphene oxide (rGO) that can be easily transferred printed onto flexible surfaces with minimal sensory interference. Via direct writing, the rGO can be designed with arbitrary shape and geometry on a liquid surface. The rGO can then be transferred conformally onto a flexible surface. This rGO-based wearable sensor is capable of sensing external stimuli, such as applied tactile pressure. The ease of application, the thin form factor, and flexible nature of the rGO-based tattoo sensor ensured device can perform reliably, while providing user comfort and minimal sensory interference.
Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.
Dielectric materials are commonly known as electrical insulators that can be polarized under strong electrical field. Currently, emerging dielectric research interests are focusing on nanoparticles mixed polymer based composites, since such materials demonstrated an astonishing increase in dielectric performance when compared to neat polymer matrix, due to the exponential increase in the interfacial area between the nanoparticles and polymer. Such findings infer that particle dispersion plays a critical role for the overall dielectric performance. In this study, we present a continuous manufacturing process consists of extrusion and stretching for Poly(vinylidene fluoride)/silane-treated titanium dioxide (PVDF/silane-treated TiO2) flexible organic/inorganic polymer nanocomposites and the experimental result. Our results show that melt blending process is able to break down both silane treated and untreated micro-size TiO2 agglomerates with extremely well dispersion in PVDF matrix. Follow-up studies and characterizations indicated that the material performances such as dielectric constant and dielectric loss are either similar or surpass the sample prepared via solvent casting and the effects of silane treatment are also discussed. A number of methods was used to characterize the composites, including AFM for dispersion verification and dielectric spectroscopy for dielectric analysis.
Supercapacitor device electrochemical performance characteristics of different nanocomposite materials containing polyaniline (PAni) and graphene nanoplatelets (GnPs) have been evaluated with two-electrode electrochemical setup. The PAni-based nanocomposite electrodes have been fabricated via ultrasonicated in-situ chemical polymerization and solvent casting process. The specific capacitance of the supercapacitor electrode have reached as high as 357.07 F/g at 10mV/s, in the case of 15:1 PAni/GnPs, as a result of graphene nanoparticles’ large surface area providing an ideal template for polymerization to occur. Electrodes under study are namely, pristine GnPs, pristine PAni, and 5:1, 15:1 PAni/GnPs nanocomposites. Material composition has been confirmed via thermal gravimetric analysis (TGA), while scanning electron microscopy (SEM) has been used to characterize the morphologies of the nanostructures. Threedimensional nanocomposite morphology has been observed in the micrographs of these nanocomposites, indicating a relationship between the material surface area and the charge storage ability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.