We report direct-write and rewritable photonic circuits based on a low-loss phase change material (PCM) thin film Sb2Se3, in which complete end-to-end functional photonic circuits can be created by direct laser writing in one step without additional fabrication processes. The direct-write phase-change photonic circuit affords exceptional flexibility, allowing any part of the circuit to be erased and rewritten, facilitating rapid design modification and reprogramming. We demonstrate the versatility of this technique with various photonic circuits for diverse applications, including an optical interconnect fabric for reconfigurable networking, a photonic crossbar array as a tensor core for optical computing, and a tunable optical filter for optical signal processing. Our technique unlocks new paradigms for programmable photonic networking, computing, and signal processing. Moreover, the rewritable photonic circuits enable rapid prototyping and testing in a convenient and cost-efficient manner, eliminate the need for nanofabrication facilities, thus promote the proliferation of photonics research and education to a broader research community.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.