In this paper, a widely tunable Cr:LiSAF laser with an external cavity was employed as the pump source. By using a triangular prism and double output couplers in the cavity, the line width can be narrowed and the pump center wavelength can be adjusted to the ideal value. The FWHM in spectrum of a pump laser can be narrowed to as small as 0.5 nm. The absorptivity of Ho:BYF at the center wavelength from 885 nm to 890 nm was measured, and the optimal pump center wavelength has been determined to 888.5 nm. Then the focal length of a focusing lens and the curvature radius of a laser output coupler have been optimized through a series of experiments. Finally, we have obtained the laser output at 3.9 μm with the optical-to-optical efficiency larger than 10% at the relatively low repetitive rate. The results might be helpful for the construction of a real laser system.
Laser processing is a technique based on the interaction between a laser and the substance for cutting, drilling, cleaning, welding, and other operations on metallic or non-metallic materials. It is widely used in some important fields of the national economy such as automobiles, microelectronics, electrical appliances, aviation, metallurgy, medical treatment, and machinery manufacturing. In the process of high-powered laser processing, a large amount of plasma will be generated and there will be the obvious inverse Bremsstrahlung absorption (IBA) near the plasma plume. The effect of laser processing will be significantly deteriorated due to the absorption of laser photons and changes in light intensity distribution. Besides, laser-induced plasma is produced during the interaction between a high-powered laser and materials. Also, it has the very important value in the research of analyzing the high-powered laser processing. To fully understand the laserinduced plasma, this paper uses the Hilbert procedure to numerically investigate the plasma generated in the laser processing. The method firstly acquires the images corresponding to the fringes of a Mach–Zehnder interferometer by using the detection after a probe laser beam passing through the plasma plume. Then, a series of operations such as the spectrum shift, unwrap, and Abel inverse transformation are performed after a fast Fourier transform (FFT). Finally, the density distribution of plasma can be calculated. This methodology provides a new algorithm for the research of laserinduced plasma, and it also valuable for the understanding the high-powered laser processing process.
Silicon is one of the most important semiconductor materials and the basic material in the field of modern microelectronics, and it has been widely used in microelectronics and photovoltaic industries which are closely related to our daily life. Because the traditional silicon wafer cutting technology has some serious problems such as insufficient cutting accuracy, low efficiency, and serious pollution, the laser processing has been paid more and more attention in silicon wafer cutting applications in about recent fifteen years. Therefore, it is extremely important to develop the laser silicon wafer cutting procedure for the improvement of the laser silicon wafer processing technology. An algorithm named as constrained interpolation profile has been invented in computational fluid dynamics. It is actually a semi-Lagrangian method to solve hyperbolic partial differential equations, and has the advantages of the stable results, compact process, and low dissipation, etc. Focused Gaussian laser beams with the same energy of 200 μJ and pulse widths of 100 fs, 20 ps, and 0.5 ns, respectively, were irradiated on the surface of a silicon wafer. The physical properties of density, temperature, and pressure in both time and space domains were obtained by means of the algorithm of constrained interpolation profile in the laser processing simulation. The mechanisms of laser silicon wafer processing were studied in detail by analyzing the changes in physical properties of silicon material. The conclusions of this paper might be useful in the optimization of a silicon wafer cutting process by the use of a pulsed laser.
Glass is one of the most important materials in industrial applications because of its high hardness, high thermal stability, and high transparency in the visible band. In general, it is very difficult to process glass with near-infrared, visible, and near-ultraviolet lasers. Physically speaking, the absorption coefficient of the glass sheet is one of the most crucial factors for processing efficiency, and it can be influenced by the temperature of a glass sheet. Therefore, to obtain the optimal processing efficiency, the influence of the temperature on the absorption coefficient should be studied in detail. In this paper, we theoretically and experimentally studied the relationship between the absorption coefficient and the temperature to improve the processing efficiency. A tunable near-ultraviolet Nd:YAG frequency-tripled harmonic laser with the wavelength ranging from 270 to 400 nm was utilized to measure the absorption coefficient, and a Peltier temperature controller was used to heat the glass sheet. It has been demonstrated that controlling the temperature is an efficient method to process the transparent glass sheet.
A serious rust phenomenon has been observed in an enclosed laser cavity. To figure out the reason which induces the rust, some experiments were carried out by recording the variation of the temperature and relative humidity at different positions. Thus, the vapor density can be numerically deduced by using the measured physical features. To avoid the undesirable rust phenomena occurring again, the exchange windows were chiseled out on an inner cover of the enclosed laser cavity in order to decrease the difference between the vapor density inside the cover and that outside the cover, which relates to the efficiency of dehumidification. The results validate that such a difference of the vapor density is a function of the area of exchange windows. Then, the curves of the vapor density versus the area of exchange windows have been plotted. It has been demonstrated that adding the area of exchange windows, which were pasted by some particulate air filters to prevent external dust particles from entering, on an inner cover might be a feasible method to avoid rust near the water cooling elements. Such a study might be useful for laser technicians to pay much more attention to the protection of undesirable vapor-induced rusting.
It has always been difficult to process a metal film with high reflectivity in the field of manufacture, industry, medicine, and military, etc. Since much of the laser energy can be reflected especially when the reflectance of the target film surface is high, it is hard to process such a metallic film by laser radiation as the energy absorbed by the film material is very little. In this paper, we used a nanosecond pulsed laser to scribe some patterns on a smooth titanium (Ti) film, and investigated the surface morphology of a Ti film ablated by different laser spot sizes and laser energy. In our experiments, it has been found that the Ti film can be efficiently processed although the surface reflectance of the Ti film is about 57% at the wavelength of 532 nm. We also see that the processing range of the Ti film will decrease when the diameter of a laser beam increases. The experimental results show that the ablated status of the surface of a Ti film for a just-focus beam is much better than that for a defocus beam under the same laser power. Furthermore, the higher the laser power, the larger the processed area. By using the optimal parameters we obtained, we also produced some hole matrices and line patterns on a glass-based Ti film by employing a short pulsed laser. The processed samples were observed with a reflecting microscope and a transmitting microscope, respectively. Our research results can play an important role in the selection of laser parameters for laser processing of some materials with a high reflectivity.
Terahertz wave is generally an electromagnetic wave at the wavelength of 0.1-10 THz (30-3000 μm). The terahertz laser is a new type of radiation source with many unique advantages and has broad applications. Generally, the size of a normal laser cavity is from a few of to several hundred millimeters, and the size of a micro-cavity is mainly from a few of to several hundred micrometers in the wavelength region of ultraviolet, visible, and near-infrared. However, if the wavelength increases to the terahertz region, the wavelength is of the order of the micro-cavity size. The power distributions inside and outside the cavity of a terahertz laser are significantly different from those for a conventional laser cavity. In this paper, a theoretical model is established to study the outputted and leaked power of a micro-cavity in the terahertz band. We assume that the wavelength of an emission terahertz source is 240 μm and simulate the output features of a micro-cavity laser with the Finite-Difference Time-Domain (FDTD) algorithm. The output characteristics of a micro-cavity have been analyzed by using two types of material and different thicknesses of the sidewall. It has been found that when the thicknesses of both silver and aluminum sidewalls are reduced to around 16 μm, the power leaking from the micro-cavity begins to increase with the decrease of the sidewall thickness. In this way, the sidewall no longer restrains terahertz radiation inside the cavity. The simulation results might be referred for the design of a terahertz laser with the micro-cavity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.