The correlated polar semimetal Ca3Ru2O7 exhibits a rich phase diagram including two magnetic transitions (TN =56 K and TC =48 K) with the appearance of an insulating-like pseudogap (at TC ). In addition, there is a crossover back to metallic behavior at T∗=30 K, the origin of which is still under debate. We utilized ultrafast optical pump optical probe spectroscopy to investigate quasi- particle dynamics as a function of temperature in this enigmatic quantum material. n conjunction with density functional theory, our experimental results synergistically reveal the origin of the T-dependent pseudogap. Further, our data and analysis indicate that the T∗ emerges as a natural consequence of T-dependent gapping out of carriers, and does not correspond to a separate electronic transition. Our results highlight the value of low fluence ultrafast optics as a sensitive probe of low energy electronic structure, thermodynamic parameters, and transport properties of Ruddlesden-Popper ruthenates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.