The inability of the eye to focus on nearby objects, presbyopia, is suffered by ~100% of people over the age of 50. Liquid crystal (LC) spectacle lenses have shown great potential for correcting presbyopia. However, correcting presbyopia in contact lens users has proven elusive and existing commercial options suffer significant compromises in vision and comfort. We describe a novel contact lens that includes a liquid crystal element that offers to correct presbyopia without the compromises associated with other technologies. We fabricated variable focus lenses using a balanced optical system, providing the additional optical power presbyopes require for near vision (typically +1.00 D to +2.00 D). The system uses positive optical power from the two substrates and variable negative optical power from the LC layer to form a balanced optical system which, when unpowered, corrects distance vision. Upon voltage application, the liquid crystal layer decreases in refractive index, resulting in additional optical power in the system, offering correction equivalent to reading glasses. Our new technology is based on a traditional contact lens material which could be placed directly on the eye. The liquid crystal lens employed is well suited to the small optical areas associated with contact lenses. We compare several different LC materials and geometries which are suitable for our application, and discuss the influence of material and geometry on switching times, optical quality and operating voltage. Our contact lenses typically switch ±2.00D in response to < 10 Vrms with response times of the order of a second.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.