Precision synchronization is vital for robust long-distance quantum networking over fiber and free-space channels for which high-fidelity entanglement swapping between separate sources via an optical Bell state measurement requires temporal overlap of photonic qubits arriving from either source. This challenge is particularly distinct in satellite-based entanglement distribution in which relative motion, channel effects, and propagation delay must be addressed. This work presents a precision synchronization method for free space entanglement distribution, and reports on risk reduction testing in a quantum networking testbed at MIT Lincoln Laboratory. Primary consideration is for a dual-uplink architecture in which photons from entanglement sources at two ground locations interact in an optical Bell-state measurement implemented on a satellite in a low-earth orbit. The control approach uses independent entanglement sources at each ground location supplemented with a synchronization signal for feedback control from a timing discriminant measured at the spacecraft. The approach is being implemented in a laboratory testbed using 1-GHz repetition rate 1550-nm band entanglement sources generating ~10-MHz source entanglement rates with few-ps photon pulse lengths. The paper describes both fundamental architectural considerations and practical implementation details.
To date, undersea optical communication has been driven by wide-beam LED systems. Directional laser systems have several advantages | increased range, increased data rate, and better performance in solar background | but require a precise tracking system to maintain laser pointing through vehicle motion. We have demonstrated an underwater laser communication system with a bi-direction, all-optical pointing, acquisition, and tracking system. Laser communication terminals were mounted on two remotely operated vehicles that were piloted to the ends of a pool (a separation of 20 m), coarsely aligned to within about 10 degrees, and then set to autonomously acquire and track each other. Acquisitions occurred within a few seconds, and the link never broke during maneuvers. To our knowledge this is the first demonstration of a functional undersea laser tracking system between mobile vehicles. The demonstrated precision and robustness can enable 1+ Gbps data links between independent, moving vehicles, over several 100 meters in clear ocean water. Additionally, this approach provides precise (cm- class) relative positioning between the communicating parties, enabling relative position, navigation, and timing (PNT) distribution between independent vehicles. This technology is a crucial enabler of undersea wireless optical networking for manned and unmanned vehicles.
Optical propagation through the ocean encounters significant absorption and scattering; the impact is exponential signal attenuation and temporal broadening, limiting the maximum link range and the achievable data rate, respectively. MIT Lincoln Laboratory is developing narrow-beam lasercom for the undersea environment, where a collimated transmit beam is precisely pointed to the receive terminal. This approach directly contrasts with the more commonly demonstrated approach, where the transmit light is sent over a wide angle, avoiding precise pointing requirements but reducing the achievable range and data rate. Two advantages of narrow-beam lasercom are the maximization of light collected at the receiver and the ability to mitigate the impact of background light by spatial filtering. Precision pointing will be accomplished by bi-directional transmission and tracking loops on each terminal, a methodology used to great effect in atmospheric and space lasercom systems. By solving the pointing and tracking problem, we can extend the link range and increase the data throughput.
We deployed a narrow-beam optical measurement and communication experiment over several days in the shallow, turbid water of Narragansett Bay, Rhode Island (USA). The experiment consisted primarily of a transmitter module and a receiver module mounted on a metal framework that could be lengthened or shortened. The communication wavelength was 515 nm. The experiment characterized light propagation characteristics, including images of the received beam over time. The experiment included manual beam steering. Images obtained during the steering process provided insight into future development of an automated steering procedure. Water transmissivity was also measured. Over time and tides, the optical extinction length varied between 0.66 m and 1.07 m. The transmitter’s optical power was kept low at 0.25 mW. The receiver included a high-sensitivity photon-counting photomultiplier tube (PMT) and a high-speed linear avalanche photodiode (APD). Both links processed data continuously in real time. The PMT supported multiple channel rates, from 1.302 Mbaud to 10.416 Mbaud. It also included strong forward error correction (FEC) capable of operating at multiple code rates. The PMT link demonstrated near-theoretical channel performance at all data rates, error-free output after FEC, and robust operation during day and night. This link efficiently traded data rate for link loss. It demonstrated error-free performance for input powers as low as -84.1 dBm, or 18 extinction lengths. The APD receiver demonstrated a channel error rate of 1e-9 at 125 Mbaud. Furthermore, it demonstrated a channel error rate correctable by FEC at a link loss equivalent to 9 extinction lengths.
KEYWORDS: Receivers, Forward error correction, Transmitters, Field programmable gate arrays, Clocks, Signal attenuation, Photodetectors, Scattering, Data communications, Signal detection
We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.
Jade Wang, C. Browne, C. Burton, D. Caplan, J. Carney, M. Chavez, J. Fitzgerald, I. Gaschits, D. Geisler, S. Hamilton, S. Henion, G. Lund, R. Magliocco, O. Mikulina, R. Murphy, H. Rao, M. Seaver, N. Spellmeyer
KEYWORDS: Receivers, Transmitters, Amplifiers, Clocks, Interferometers, Modulators, Field programmable gate arrays, Signal attenuation, Diagnostics, Control systems
Recently, we demonstrated a multi-rate DPSK modem with high-sensitivity over a wide dynamic range, which can
significantly benefit performance and cost of NASA’s Laser Communication Relay Demonstration. This increased
flexibility, combined with the need to verify robust operation under challenging free-space environmental conditions,
results in a large number of operational states which must be accurately and thoroughly tested. To support this, we
developed test and diagnostic capabilities that can be easily reconfigured to assess modem performance across a wide
range of data rates and operational modes. These capabilities include internal self-test modes in which test waveforms
can be directed from the transmitter into the receiver to determine modem communications performance. We used these
self-test capabilities to demonstrate robust performance in realistic environments during thermal-vacuum,
shock/vibration, and EMI/EMC testing.
H. Rao, C. Browne, D. Caplan, J. Carney, M. Chavez, A. Fletcher, J. Fitzgerald, R. Kaminsky, G. Lund, S. Hamilton, R. Magliocco, O. Mikulina, R. Murphy, M. Seaver, M. Scheinbart, N. Spellmeyer, J. Wang
We have designed and experimentally demonstrated a radiation-hardened modem suitable for NASA’s Laser
Communications Relay Demonstration. The modem supports free-space DPSK communication over a wide range of
channel rates, from 72 Mb/s up to 2.88 Gb/s. The modem transmitter electronics generate a bursty DPSK waveform,
such that only one optical modulator is required. The receiver clock recovery is capable of operating over all channel
rates at average optical signal levels below -70 dBm. The modem incorporates a radiation-hardened Xilinx Virtex 5
FPGA and a radiation-hardened Aeroflex UT699 CPU. The design leverages unique capabilities of each device, such as
the FPGA’s multi-gigabit transceivers. The modem scrubs itself against radiation events, but does not require pervasive
triple-mode redundant logic. The modem electronics include automatic stabilization functions for its optical
components, and software to control its initialization and operation. The design allows the modem to be put into a low-power standby mode.
We describe a flexible high-sensitivity laser communication transceiver design that can significantly benefit performance
and cost of NASA's satellite-based Laser Communications Relay Demonstration. Optical communications using
differential phase shift keying, widely deployed for use in long-haul fiber-optic networks, is well known for its superior
sensitivity and link performance over on-off keying, while maintaining a relatively straightforward design. However,
unlike fiber-optic links, free-space applications often require operation over a wide dynamic range of power due to
variations in link distance and channel conditions, which can include rapid kHz-class fading when operating through the
turbulent atmosphere. Here we discuss the implementation of a robust, near-quantum-limited multi-rate DPSK
transceiver, co-located transmitter and receiver subsystems that can operate efficiently over the highly-variable free-space
channel. Key performance features will be presented on the master oscillator power amplifier (MOPA) based TX,
including a wavelength-stabilized master laser, high-extinction-ratio burst-mode modulator, and 0.5 W single
polarization power amplifier, as well as low-noise optically preamplified DSPK receiver and built-in test capabilities.
N. Spellmeyer, C. Browne, D. Caplan, J. Carney, M. Chavez, A. Fletcher, J. Fitzgerald, R. Kaminsky, G. Lund, S. Hamilton, R. Magliocco, O. Mikulina, R. Murphy, H. Rao, M. Scheinbart, M. Seaver, J. Wang
The multi-rate DPSK format, which enables efficient free-space laser communications over a wide range of data rates, is
finding applications in NASA’s Laser Communications Relay Demonstration. We discuss the design and testing of an
efficient and robust multi-rate DPSK modem, including aspects of the electrical, mechanical, thermal, and optical
design. The modem includes an optically preamplified receiver, an 0.5-W average power transmitter, a LEON3 rad-hard
microcontroller that provides the command and telemetry interface and supervisory control, and a Xilinx Virtex-5 radhard
reprogrammable FPGA that both supports the high-speed data flow to and from the modem and controls the
modem’s analog and digital subsystems. For additional flexibility, the transmitter and receiver can be configured to
support operation with multi-rate PPM waveforms.
Large spurious-free dynamic range (SFDR) has been measured in a fiber optic link using an InGaAsP electroabsorption (EA) waveguide modulator. Link phase noise is investigated and conversion of AM noise to phase noise appears to be an issue in the EA device. Preliminary measurements of the EA link show inferior close-to-carrier phase noise compared to a link using a Mach-Zehnder modulator with similar SFDR. Optical feedback from the output coupling fiber is shown to contribute partially to close-in phase noise.
Optically transparent time-division multiplexors and switches can be used to create terabit packet-switched networks. Cascaded optical delay (COD) multiplexors are modular, buffered 2:1 statistical packet multiplexors build from 'smart' crossbars and fiber delay lines. We have implemented the fundamental unit of COD multiplexors, a memoryless 2:1 packet multiplexor. It accepts fixed-length packets. It is designed to handle slotted and unslotted traffic, so it does not require network synchronization. This multiplexor has been built using off-the-shelf components. We demonstrate its switching characteristics for 340 ns packets, as well as present its measured packet loss rate. It can be used to make larger, buffered multiplexors with improved packet loss rates. We present the statistical insertion los distribution associated with buffered COD multiplexors. Furthermore, we outline a method of optical loss compensation which eliminates the insertion loss distribution.
We have constructed an optical 2-to-1 packet multiplexor for use in the next generation of digital networks. It has a clear advantage over conventional electronic network nodes because it can support any bit rate, theoretically up to the full bandwidth of a fiber. Since it switches on a packet-by-packet basis, the control electronics are simple and inexpensive. The multiplexor uses electronically-addressed 2 X 2 lithium niobate directional coupler switches to route packets and lengths of fiber to buffer contentious packets. The multiplexor can be cascaded to form a larger 2-to-1 multiplexor with improved packet loss performance. We present theoretical and simulated results (including packet loss rate and optical insertion loss) for this multiplexor. We also contrast the performance of the multiplexor for slotted input versus unslotted input.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.