Extremely Large Telescopes are considered worldwide as one of the highest priorities in ground-based astronomy, for they have the potential to vastly advance astrophysical knowledge with detailed studies of subjects including the first objects in the Universe, exoplanets, super-massive black holes, and the nature and distribution of the dark matter and dark energy which dominate the Universe. ESO is building its own Extremely Large optical/infrared Telescope, the ELT. This new telescope will have a 39 m main mirror and will be the largest optical/NIR telescope in the world, able to work at the diffraction limit. METIS, one of the first light instruments of the ELT, has powerful imaging and spectrographic capabilities on the thermal wavelengths. It will allow the investigation of key properties of a wide range of objects, from exoplanets to star forming regions, and it is highly complementary to other facilities such as the JWST. METIS is an extremely complex instrument, weighing almost 11 ton, and requiring high positioning and steering precisions. Here we present the ELT’s METIS’ Warm Support Structure. It consists on a 7 leg elevation platform, a passive hexapod capable of providing METIS with sub-millimetre and arcsecond positioning and steering resolutions, and an access platform where personnel can perform in-situ maintenance activities. The support structure weighs less than 5 ton and is capable of surviving earthquake conditions with accelerations up to 5g. The current design is supported by FEM simulations in ANSYS®, and was approved for Phase C.
The METIS consortium in Portugal will build the support and access structure (WSS) for the mid-infrared, first generation ELT instrument - METIS. The specific characteristics of the METIS instrument and the ELT pose several challenges to building the WSS according to functional requirements. In addition, the assembly of the WSS and integrating the WSS with METIS poses its own particular challenges due to the singular loads and dimensions. Transversal to all phases of assembly and integration of the WSS and METIS is the concern for the safety of the instruments and personnel involved. We here present these requirements, challenges and mitigation measures in light of the assembly and integration of the WSS, and the WSS with METIS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.