National Astronomical Observatory of Japan (NAOJ) is responsible for procuring the Telescope Structure System (STR) of the Thirty Meter Telescope (TMT) and engaged Mitsubishi Electric Corporation (MELCO) to perform the preliminary/final design and production readiness work since 2012. The final design of the TMT STR was deemed completed through a series of external design reviews covering structural and mechanical, controls, and auxiliary systems such as the Segment Handling System (SHS), Aerial Service Platform (ASP), Elevator (ELV), safety, and the seismic isolation system. TMT STR is currently in the production readiness phase and has already passed the Production Readiness Reviews (PRRs) for major rotating mechanical structures. In this paper we present an overview of the design progress of the TMT STR, matured through extensive studies, performance assessments, and design budgets derived from bottoms-up analyses. Additionally, we discuss prototype activities to mitigate risks to performance and manufacturability of complex designs, along with the current programmatic status of the project.
ULTIMATE-Subaru is an on-going project at the Subaru Telescope for the next-generation wide-field infrared astronomy with adaptive optics (AO). The adaptive secondary mirror (ASM) is an important subsystem to provide improved seeing by ground-layer AO for a new infrared instrument equipped with a wide-field camera and a multi-object spectrograph. The ASM is suitable for the correction of the ground-layer of the atmospheric turbulence because the secondary mirror of the telescope is conjugated close to the ground level without any additional optics. The correction of the ground-layer turbulence near the telescope aperture improves the seeing over a wide field-of-view, because the ground-layer is common for wide range of direction on the sky and the dominant component of the total seeing. However, the performance does not reach the diffraction-limit due to the residual uncorrected upper atmospheric turbulence. The ASM is carefully designed to replace the existing non-adaptive infrared secondary mirror of the Subaru telescope, with the minimum modification on the telescope and little impact on the existing instruments. In this paper, we will present the current status of the development of the Subaru ASM.
The Subaru laser guide star system has been upgraded by implementing the TOPTICA/MPBC guide-star laser and a new mirror-based laser relay system. The upgrade is to replace the aged laser and its transfer system and provide the improved performance for stable science operation. The increased laser return photon can also bring a new capability of generating multiple laser guide stars (LGSs) by splitting the laser beam. The new laser guide star system was installed on the Subaru telescope in December 2021 and commissioning observations were conducted in 2022. The LGSAO mode with the new laser guide star system has been offered for science open use program since 2023. The new laser guide star system provides more stable LGS than the previous system with respect to the laser power and pointing. The LGS spot size is ∼1.0 arcsec in FWHM under median seeing condition. The LGS photon return is more than 10 times brighter than the previous system. By utilizing the increased brightness, further upgrade of the Laser Launching Telescope (LLT) is being implemented to generate the asterism of four LGSs with the diameter variable between 10 and 40 arcsec for the new Laser Tomography Adaptive Optics (LTAO) system.
HiZ-GUNDAM is a future satellite mission whose mission concept was approved by ISAS/JAXA, and it is one of the future satellite candidates of JAXA’s competitive medium-class mission. HiZ-GUNDAM will lead time-domain astronomy in 2030s, and its key sciences are (1) exploration of the early universe with high-redshift gamma-ray bursts, and (2) contribution to the multi-messenger astronomy. Two mission payloads are aboard HiZ-GUNDAM to realize these two scientific issues. The wide field X-ray monitors which consist of Lobster Eye optics array and focal imaging sensor, monitor ~0.5 steradian field of view in 0.5–4 keV energy range. The near infrared telescope with an aperture size of 30 cm in diameter performs simultaneous 5-band photometric observation in 0.5–2.5 μm wavelength with Koester’s prism for X-ray transients discovered by Wide Field X-ray Monitor. In this paper, we introduce the mission overview of HiZ-GUNDAM while the information contained herein may change in future studies.
The instrumentation of the Prime Focus Spectrograph (PFS), a next generation facility instrument on the Subaru telescope, is now in the final phase of its commissioning process and its general, open-use operations for sciences will provisionally start in 2025. The instrument enables simultaneous spectroscopy with 2386 individual fibers distributed over a very wide (∼1.3 degrees in diameter) field of view on the Subaru’s prime focus. The spectra cover a wide range of wavelengths from 380nm to 1260nm in one exposure in the Low-Resolution (LR) mode (while the visible red channel has the Medium-Resolution (MR) mode as well that covers 710−885nm). The system integration activities at the observatory on Maunakea in Hawaii have been continuing since the arrival of the Metrology Camera System in 2018. On-sky engineering tests and observations have also been carried out continually since September 2021 and, despite various difficulties in interlacing commissioning processes with development activities on the schedule and addressing some major issues on hardware and software, the team successfully observed many targeted stars as intended over the entire field of view (Engineering First Light) in September 2022. Then in parallel to the arrival, integration and commissioning of more hardware components, validations and optimizations of the performance and operation of the instrument are ongoing. The accuracy of the fiber positioning process and the speed of the fiber reconfiguration process have been recently confirmed to be ∼ 20−30μm for 95% of allocated fibers, and ∼130 seconds, respectively. While precise quantitative analyses are still in progress, the measured throughput has been confirmed to be consistent with the model where the information from various sub-components and sub-assemblies is integrated. Long integration of relatively faint objects are being taken to validate an expected increase of signal-to-noise ratio as more exposures are taken and co-added without any serious systematic errors from, e.g., sky subtraction process. The PFS science operation will be carried out in a queue mode by default and various developments, implementations and validations have been underway accordingly in parallel to the instrument commissioning activities. Meetings and sessions are arranged continually with the communities of potential PFS users on multiple scales, and discussions are iterated for mutual understanding and possible optimization of the rules and procedures over a wide range of processes such as proposal submission, observation planning, data acquisition and data delivery. The end-to-end processes of queue observations including successive exposures with updated plans based on assessed qualities of the data from past observations are being tested during engineering observations, and further optimizations are being undertaken. In this contribution, a top-level summary of these achievements and ongoing progresses and future perspectives will be provided.
ULTIMATE-Subaru is the next-generation facility instrument program of the Subaru Telescope which will extend the existing Subaru’s wide-field survey capability to the near-infrared wavelength. The ULTIMATE-Subaru instrument suite includes Ground-Layer Adaptive Optics (GLAO) and wide-field near-infrared instruments, aiming to provide ∼0.2 arcsec image size at K band (2.2 μm) over 20 arcmin diameter field of view at the Cassegrain focus. The planned first light instrument is a Wide-Field Imager (WFI), which covers a 14 × 14 square arcmin field of view from 0.9 to 2.5 μm in wavelength. GLAO and WFI are currently in the final design phase, aiming to start the commissioning observations at the telescope in 2028. In parallel to the development for ULTIMATE wide-field instruments, there are ongoing activities to develop a narrow-field wide-band spectrograph (NINJA) together with a Laser Tomography AO system (ULTIMATE-START) utilizing the Adaptive Secondary Mirror and the Laser Guide Star Facility being developed for the GLAO system. In this presentation, an overview of the ULTIMATE-SUBARU instruments, their current status, and future prospects will be presented.
We present the current status and future plan of the instruments at the Subaru Telescope.
The Prime Focus Spectrograph (PFS) achieved the engineering first light in September, 2022.
The installation of the PFS subsystems will be completed in November, 2023, and it is
entering the final stage of the commissioning. For the next generation wide-field facility
instrument ULTIMATE-Subaru, it successfully passed the preliminary design review and started
the detailed design study for the GLAO system in 2022. There are ongoing projects for the
facility AO system (AO188) including the upgrades of the deformable mirror and wavefront
sensors. In addition, we are discussing implementations of the Nasmyth Beam Switcher, which
enables remotely switching the instruments downstream of AO188, for more efficient operation
at NsIR focus. As for the visitor instruments, there are a growing number of interests to
carry in new instruments, upgrade existing ones, or resume operations of decommissioned
instruments as visitor instruments. We are having discussions to better coordinate these
demands and develop a future roadmap of NsIR instrumentation including both facility and
visitor instruments.
We present the results of optical performance verification for the Prime Focus Spectrograph (PFS) fiber optics module, so-called “CableBs”, at Subaru Telescope. PFS is the next generation ultra-wide field multi object spectrograph. It employs 2386 fibers of which the fiber tips are placed precisely on the primary focal plane over a field of view of 1.3 degrees in diameter. CableB transfers light from the fiber positioning module, or Prime Focus Instrument, to the spectrographs. PFS utilizes four CableBs and each of them carries just over 600 science grade fibers. We completed installation of all CableBs at the telescope in June 2023 after two-years of intermittent work. The optical performance of each CableB was subsequently assessed, focusing on four areas; continuity, uniformity, throughput, and focal ratio degradation (FRD). For examining continuity, we illuminated one termination of CableB with flat LED panel and observed the transmitted light. We found only one fiber newly broken during shipment from the integration site. We also checked uniformity of the relative intensity of light propagating in each fiber. The whole variations around the average intensities fit in 20% range among fibers in each CableB, which was consistent with the measurement before shipping. Throughput of sampled fibers were measured in a wavelength range from 400 to 1400 nm with commercial spectrometers. The measurement at the telescope and the integration site each showed a throughput of approximately 70%, so both sets of measurements are consistent. Finally, we measured FRD employing the collimated beam method to ensure that CableBs were free from any significant physical stress after the installation. Our FRD measurements were comparable before and after the installation. In addition, a long-term monitoring of over a few months showed FRD remained sufficiently stable for science operations. According to these results, we conclude that the installation of CableBs at Subaru Telescope was successful.
Integral field spectroscopy (IFS) is an observational method for obtaining spatially resolved spectra over a specific field of view (FoV) in a single exposure. In recent years, near-infrared IFS has gained importance in observing objects with strong dust attenuation or at a high redshift. One limitation of existing near-infrared IFS instruments is their relatively small FoV, less than 100 arcsec2, compared with optical instruments. Therefore, we developed a near-infrared (0.9 to 2.5 μm) image-slicer type integral field unit (IFU) with a larger FoV of 13.5×10.4 arcsec2 by matching a slice width to a typical seeing size of 0.4 arcsec. The IFU has a compact optical design utilizing off-axis ellipsoidal mirrors to reduce aberrations. Complex optical elements were fabricated using an ultra-precision cutting machine to achieve root mean square surface roughness of less than 10 nm and a P-V shape error of less than 300 nm. The ultra-precision machining can also simplify the alignment procedures. The on-sky performance evaluation confirmed that the image quality and the throughput of the IFU were as designed. In conclusion, we successfully developed a compact IFU utilizing an ultra-precision cutting technique, almost fulfilling the requirements.
ULTIMATE-Subaru is an on-going project at the Subaru Telescope for the next-generation wide-field infrared astronomy. The adaptive secondary mirror optically conjugated close to the ground level, is an important subsystem of ground-layer adaptive optics. Because the ground-layer is the dominant component in the total atmospheric turbulence existing near the aperture of the telescope, the correction of the ground-layer turbulence improves the seeing size over a wide field-of-view. The design together with the plan of the Subaru ASM including the interface to the telescope and the calibration strategy is presented.
ULTIMATE-Subaru is a next facility instrumentation program of the Subaru Telescope. The goal of this project is to extend the wide-field capability of the Subaru to near-infrared (NIR), by developing a wide-field ground-layer adaptive optics (GLAO) system and wide-field NIR instruments. The GLAO system will uniformly improve the image quality up to 20-arcmin field of view in diameter by correcting for the ground-layer turbulence. The expected image quality after the GLAO correction is FWHM~0".2 in K-band under moderate seeing conditions. In this presentation, we present preliminary design overview of the GLAO system at the Cassegrain focus, which consist of an Adaptive Secondary Mirror, NGS and LGS wavefront sensor system, a laser guide star facility, and control system. We also present the prototyping activities to validate the selected design of the GLAO system.
This conference presentation was prepared for the Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation V conference at SPIE Astronomical Telescopes + Instrumentation, 2022.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is now being tested on the telescope. The instrument is equipped with very wide (1.3 degrees in diameter) field of view on the Subaru’s prime focus, high multiplexity by 2394 reconfigurable fibers, and wide waveband spectrograph that covers from 380nm to 1260nm simultaneously in one exposure. Currently engineering observations are ongoing with Prime Focus Instrument (PFI), Metrology Camera System (MCS), the first spectrpgraph module (SM1) with visible cameras and the first fiber cable providing optical link between PFI and SM1. Among the rest of the hardware, the second fiber cable has been already installed on the telescope and in the dome building since April 2022, and the two others were also delivered in June 2022. The integration and test of next SMs including near-infrared cameras are ongoing for timely deliveries. The progress in the software development is also worth noting. The instrument control software delivered with the subsystems is being well integrated with its system-level layer, the telescope system, observation planning software and associated databases. The data reduction pipelines are also rapidly progressing especially since sky spectra started being taken in early 2021 using Subaru Nigh Sky Spectrograph (SuNSS), and more recently using PFI during the engineering observations. In parallel to these instrumentation activities, the PFS science team in the collaboration is timely formulating a plan of large-sky survey observation to be proposed and conducted as a Subaru Strategic Program (SSP) from 2024. In this article, we report these recent progresses, ongoing developments and future perspectives of the PFS instrumentation.
In 2022, Subaru is entering a new stage called ”Subaru-2” which will be realized by the three wide-field facility instruments. The first one is the Hyper Suprime-Cam (HSC), the prime focus optical imager with 1.5 deg FoV. It started the science operation in 2014 and completed the strategic survey program last year with total of 330 observing nights. The second instrument is the Prime Focus Spectrograph (PFS), which is an optical to nearinfrared multiobject fiber spectrograph with a similar FoV to HSC. In 2021, it started engineering observations with all of the delivered subsystems; the Prime Focus Instrument, Spectrograph Module 1, Fiber Cable System 1, and Metrology Camera System. The commissioning and installation of the other subsystems will continue in 2022-2023. The third system is the ULTIMATE-Subaru which consists of the Ground Layer AO (GLAO) system and wide-field near-infrared instruments. The conceptual design review of the instruments was done in 2021, and the preliminary design review of the GLAO system is planned in 2022. Among the existing facility instruments, the Adaptive Optics system, AO188, is undergoing active upgrades which include the new laser guide star system, real-time computer system, deformable mirror, NIR wavefront sensor, and relay optics to quickly switch the downstream science instruments. We will also present the status and plan of the other facility instruments as well as the visitor instruments.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is a very wide- field, massively multiplexed, and optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed in the 1.3 degree-diameter field of view. The spectrograph system has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously deliver spectra from 380nm to 1260nm in one exposure. The instrumentation has been conducted by the international collaboration managed by the project office hosted by Kavli IPMU. The team is actively integrating and testing the hardware and software of the subsystems some of which such as Metrology Camera System, the first Spectrograph Module, and the first on-telescope fiber cable have been delivered to the Subaru telescope observatory at the summit of Maunakea since 2018. The development is progressing in order to start on-sky engineering observation in 2021, and science operation in 2023. In parallel, the collaboration is trying to timely develop a plan of large-sky survey observation to be proposed and conducted in the framework of Subaru Strategic Program (SSP). This article gives an overview of the recent progress, current status and future perspectives of the instrumentation and scientific operation.
The HiZ-GUNDAM (high-z Gamma-ray bursts for UNraveling the Dark Ages Mission) is a time-domain and multi-messenger astronomy mission by monitoring high-energy astronomical transient events such as gamma-ray bursts (GRBs). The HiZ-GUNDAM is designed to provide alerts of high-redshift GRBs with an ultra-wide field X-ray monitor and a co-onboard 30-cm telescope for immediate photometric follow-up observations in the visible and near-infrared. The HiZ-GUNDAM satellite automatically changes its attitude toward the discovered transient object, starts the follow-up observations with the telescope, and sends alert information including the detailed position, the apparent magnitude and photometric redshift of the transient object within one hour. This mission was selected as one of the mission concept candidates of the competitively-chosen medium-class mission of ISAS/JAXA in the mid-2020s. The basic design of the breadboard model of the telescope is undergoing, and the verification plan of it is studied. The optics are cooled down to 200 K by radiation cooling, and infrared detectors are additionally cooled down to 120 K by a mechanical cooler. All mirrors in the telescope are made of the same aluminum-alloy to reduce the alignment errors during cooling. The four-band simultaneous observation is realized by three beam splitters. The HgCdTe and HyViSi detectors are installed in this telescope. Basic technologies for these specifications are demonstrated by our other missions. In addition, the onboard detection algorithm of high-redshift GRBs by distinguishing them from nearby dusty galaxies in the orbit is also studied. In this paper, we introduce the current status of the development of the telescope onboard HiZ-GUNDAM.
The Simultaneous-color Wide-field Infrared Multi-object Spectrograph (SWIMS) is one of the 1st generation facility instruments for the University of Tokyo Atacama Observatory (TAO) 6.5 m telescope currently being constructed at the summit of Cerro Chajnantor (5,640 m altitude) in northern Chile. SWIMS has two optical arms, the blue arm covering 0.9–1.4 µm and the red 1.4–2.5 µm, by inserting a dichroic mirror into the collimated beam, and thus is capable of taking images in two filter-bands simultaneously in imaging mode, or whole nearinfrared (0.9–2.5 µm) low-to-medium resolution multi-object spectra in spectroscopy (MOS) mode, both with a single exposure. SWIMS was carried into Subaru Telescope in 2017 for performance evaluation prior to completion of the construction of the 6.5 m telescope, and successfully saw the imaging first light in May 2018 and MOS first light in Jan 2019. After three engineering runs including the first light observations, SWIMS has been accepted as a new PI instrument for Subaru Telescope from the semester S21A until S22B. In this paper, we report on details of on-sky performance of the instrument evaluated during the engineering observations for a total of 7.5 nights.
How much light from the astronomical object actually reaches the focal plane of a telescope? To what extent the sensitivity can be extended to both ends of the visible wavelengths – ultraviolet (UV) and infrared (IR) – as much as possible from the ground? And how to maintain good throughput of the telescope optics? In this report, we make a simplified model to show effect in the reflectivity change of the telescope mirror from the recoating and cleaning versus degradation focusing on a segmented primary mirror of a telescope. The better understandings and monitoring of these competing factors will help fine tune the scheduling of the in-situ cleaning such as CO2 cleaning. By maintaining the high throughput of the optics, it becomes more feasible to catch rare atmospheric condition whenever it becomes available for very sensitive UV or IR observations during Moon’s dark and bright phases, respectively. The degradation not recoverable by the cleaning is reset by replacing dirty segments with freshly coated ones. The importance of regular in-situ cleaning is evident when it takes long time to replace the large number of freshly coated segments. It is important to clean the entire aperture as much as possible when a wet condition is forecast; for once the contamination settles on the surface, CO2 cleaning alone won’t be able to recover good surface characteristics of reflectivity, scattering, and emissivity.
We present the current status and future plan of the instruments at the Subaru Telescope. The Hyper Suprime- Cam, which is a wide-field optical imager at the prime-focus and started the science operation in 2014, has been extensively used for a large survey program and general open use observations. The Prime Focus Spectrograph started the commissioning of the first subsystem, the Metrology Camera System, in 2018 and has been continuing the installation of the other subsystems. As the third system of the wide-field instrumentation suite, ULTIMATE-Subaru has started preliminary design for the GLAO system and conceptual designs for the science instruments. We will also present the status, upgrades, and future plan of the other facility instruments and visiting instruments.
We report the reflectivity of the Subaru Telescope's mirrors and these time evolutions measured with the Subaru Portable Spectrophotometer (SPS). Thanks to the capability of SPS, the absolute, spectroscopic reflectivity has been measured in-situ on the telescope since October 2017, and it becomes possible to understand and forecast the time evolution of the reflectivity degradation. We established a simple two factor model for the reflectivity degradation of the primary mirror which has coated with aluminum in 2017. From a study of CO2 cleaning with SPS, a part of dust on the mirror surface was found to be removed with CO2 cleaning, on the other hand, the roughness of the surface was found to become larger than before cleaning. The time evolution of the reflectivity of the primary mirror is now able to be forecasted. In parallel, we have applied SPS measurement to the infrared secondary mirror of the Subaru Telescope (IR M2) and found a significant loss of reflectivity in the visible wavelength in November 2018. IR M2 had been coated with silver in 2008 and used for over ten years. Although the original reflectivity of silver mirror is ~98% at 589 nm, there was ~50% in November 2018, and it was ~30% at in November 2019. One of the causes of the significant loss could be due to volcanic gas from the explosion of Kilauea in May 2018; however, it was hard to explain the continuing degradation in reflectivity through the following year. The reflectivity could not be recovered by any quick cleanings. We carried out recoating of IR M2 in November 2019. A three-factor model to explain the reflectivity degradation of IR M2 was considered. The model would help us to understand what happens on silver mirrors. On the other hand, unknown localized phenomenon such as a white spot was seen on the IR M2 mirror surface.
The windscreen of the Subaru Telescope, which had been installed to prevent strong wind from directly hitting the telescope, was damaged and dropped out during the night operation at around 12:40 am, April 10, 2017. After that all observations at Subaru Telescope have been forced to be done without the windscreen. Due to the lack of the windscreen, the telescope would vibrate with strong wind, and the shape of the primary mirror would be deformed, thus the star image would become worse. Here we have investigated the effect of the lack of the windscreen statistically. The seeing at zenith at 500 nm was calculated from the FWHM of the star image obtained from the HSC on-site analysis software, and compared with the DIMM seeing at the east ridge of Maunakea simultaneously. Although the median seeing value varied by ~0.100 each year, the median seeing of DIMM before and after the incident is almost the same value (0.6100 and 0.6400), while the median seeing of HSC after the incident is ~0.0700 larger than before (0.6800 to 0.7500). The wind speeds at the telescope top ring, telescope center section, and outside the dome roof were investigated from the telescope telemetry data, and the correlations with the seeing were also investigated. Although the wind speed outside the dome did not change significantly before and after the incident, it was found that the wind speed inside the dome increased after the incident. Although it is not clear whether the degradation of the HSC seeing can be attributed to the absence of the windscreen, the seeing values over the last three years have statistically become ~10% worse than before.
HiZ-GUNDAM is a future satellite mission which will lead the time-domain astronomy and the multi-messenger astronomy through observations of high-energy transient phenomena. A mission concept of HiZ-GUNDAM was approved by ISAS/JAXA, and it is one of the future satellite candidates of JAXA’s medium-class mission. We are in pre-phase A (before pre-project) and elaborating the mission concept, mission/system requirements for the launch in the late 2020s. The main themes of HiZ-GUNDAM mission are (1) exploration of the early universe with high-redshift gamma-ray bursts, and (2) contribution to the multi-messenger astronomy. HiZ-GUNDAM has two kinds of mission payload. The wide field X-ray monitors consist of Lobster Eye optics array and focal imaging sensor, and monitor ~1 steradian field of view in 0.5 – 4 keV energy range. The near infrared telescope has an aperture size 30 cm in diameter, and simultaneously observes four wavelength bands between 0.5 – 2.5 μm. In this paper, we introduce the mission overview of HiZ-GUNDAM.
The reflectivity of a telescope primary mirror is one of the fundamental parameters that determines the telescope performance. Due to a lack of suitable instruments, however, measuring the absolute value of the reflectivity, in particular wide spectral measurements in-situ, has been almost impossible. To solve this problem, we developed a portable spectrophotometer called the Subaru Portable Spectrophotometer (SPS). SPS covers a spectral range between 380 and 1000 nm with a resolution of 2 nm. Its dimension and weight enable in-situ measurement on the primary mirror. A modified V-N method is applied to SPS for obtaining the absolute reflectivity. A sequential measurement makes SPS compensate the instrumental drift. The great advantage of SPS is its capability of getting absolute spectral reflectivity in-situ, even after the primary mirror is mounted on a telescope. In the case of Subaru Telescope, SPS clarified the reflectivity of the primary mirror coated with aluminum 4 years ago. Periodic measurements have been on-going since the primary mirror recoating in 2017. It is now possible to study the telescope reflectivity degradation with SPS.
Vibrations are a key source of image degradation in ground-based instrumentation, especially for high-contrast imaging instruments. Vibrations reduce the quality of the correction provided by the adaptive optics system, blurring the science image, and reducing the sensitivity of most science modules. We studied vibrations using the Subaru coronagraphic extreme adaptive optics instrument at the Subaru Telescope as it is the most vibration-sensitive system installed on the telescope. We observed vibrations for all targets, usually at low frequency, below 10 Hz. Using accelerometers on the telescope, we confirmed that these vibrations were introduced by the telescope itself, and not the instrument. It was determined that they were related to the pitch of the encoders of the telescope drive system, both in altitude and azimuth, with frequencies evolving proportionally to the rotational speed of the telescope. Another strong vibration was found in the altitude axis of the telescope, around the time of transit of the target, when the altitude rotational speed is below 0.12 arc sec / s. These vibrations are amplified by the 10-Hz control loop of the telescope, especially in a region between 4 and 6 Hz. We demonstrate an accurate characterization of the frequencies of the telescope vibrations using only the coordinates—right ascension and declination—of the target and provide a means by which we can predict them for any telescope pointing. This will be a powerful tool that can be used by more advanced wavefront control algorithms, especially predictive control that uses information about the disturbance to calculate the best correction.
The reflectivity of telescope primary mirror is one of the fundamental parameters that shows the telescope performance. However, it has been difficult to obtain absolute value, especially the wide range spectroscopic performance measured in-situ on the primary mirror due to the lack of suitable measuring instrument. To overcome this challenge, we developed a portable spectrophotometer to measure the absolute spectroscopic reflectivity of telescope primary mirror. Its small dimension and light weight enable in-situ measurement on the primary mirror. This spectrophotometer covers the spectral range from 380 nm to 1000 nm with 2 nm resolution. The incident angle to the measuring surface is 12 degrees. The measurement beam size is about 12 mm in diameter. To obtain the absolute value, we adopted the principle of V-N method for the spectrophotometer. A sequential measurement also enables us to cancel the instability of the instrument.
The Subaru Telescope primary mirror was recoated with Aluminum on October 20, 2017. It was the eighth coating work from its arrival at Maunakea, Hawaii in 1998 and was about four years from the previous recoating. Before the recoating work, the reflectivity measured with the spectrophotometer was 70~76 % (@400 nm), 75~80 % (@600 nm), and 73~78 % (@800 nm). The large dispersion of the reflectivity is from non-uniform contamination of the surface, especially from the accumulation of dust particles on the mirror.
After the fresh coating of Aluminum, the values returned to 92.1 % (@400 nm), 90.5 % (@600 nm), and 85.8 % (@800 nm) with standard deviation less than 0.6 %. There were the data taken at the outside of the vacuum chamber right after the recoating.
The great advantage of our spectrophotometer is its capability of getting absolute spectroscopic reflectivity of the primary mirror in-situ. We can continue to monitor the reflectivity of the primary mirror in-situ using this spectrophotometer, even after the primary mirror is mounted on the telescope. This helps us better understanding of the long-term reflectivity degradation.
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument, under development for the Subaru Telescope, has currently the fastest on-sky wavefront control loop, with a pyramid wavefront sensor running at 3.5 kHz. But even at that speed, we are still limited by low-frequency vibrations. The current main limitation was found to be vibrations attributed mainly to the rotation of the telescope. Using the fast wavefront sensors, cameras and accelerometers, we managed to identify the origin of most of the vibrations degrading our performance. Low-frequency vibrations are coming from the telescope drive in azimuth and elevation, as well as the elevation encoders when the target is at transit. Other vibrations were found at higher frequency coming from the image rotator inside Subaru's adaptive optics facility AO188.
Different approaches are being implemented to take care of these issues. The PID control of the image rotator has been tuned to reduce their high-frequency contribution. We are working with the telescope team to tune the motor drives and reduce the impact of the elevation encoder. A Linear Quadratic Gaussian controller (LQG, or Kalman filter) is also being implemented inside SCExAO to control these vibrations. These solutions will not only improve significantly SCExAOs performance, but will also help all the other instruments on the Subaru Telescope, especially the ones behind AO188. Ultimately, this study will also help the development of the TMT, as these two telescopes share very similar drives.
We are now investigating and studying a small satellite mission HiZ-GUNDAM for future observation of gamma-ray bursts (GRBs). The mission concept is to probe “the end of dark ages and the dawn of formation of astronomical objects”, i.e. the physical condition of early universe beyond the redshift z > 7. We will consider two kinds of mission payloads, (1) wide field X-ray imaging detectors for GRB discovery, and (2) a near infrared telescope with 30 cm in diameter to select the high-z GRB candidates effectively. In this paper, we explain some requirements to promote the GRB cosmology based on the past observations, and also introduce the mission concept of HiZ-GUNDAM and basic development of X-ray imaging detectors.
Dome Fuji, on the Antarctic plateau, is expected to be one of the best sites for infra-red astronomy. In Antarctica, the coldest, driest air on Earth provides the deepest detection limit. Furthermore, the weak atmospheric turbulence above the boundary layer allows for high spatial resolution. We plan to perform site-testing at Dome Fuji during the austral summer of 2010-2011. This will be the first observation to use an optical/infra-red telescope at Dome Fuji. This paper introduces the Antarctic Infra-Red Telescope with a 40cm primary mirror (AIRT40) which will be used in this campaign; it is an infra-red Cassegrain telescope with a fork equatorial mount. AIRT40 will be used for not only site testing (measurement of seeing and sky background) and daytime astronomical observation during this summer campaign, but also for remote scientific observations during the 2012-2014 winter-over campaign. For this purpose, AIRT40 has to work well even at -80 degree Celsius. Therefore, we accounted for the thermal contraction of the materials while designing it, and made it with special parts which were tested in a freezer. For easy operation, many handles for transportation and a polar alignment stage were installed. Moreover, we confirmed that this telescope has enough pointing, tracking, and optical accuracy for the summer campaign through the test observations at Sendai, Japan. Because of these preparations AIRT40 is suited for observations at Dome Fuji. In the 2010-2011 campaign AIRT40 will be used to measure the seeing, infra-red sky background, and to observe Venus.
In Antarctica the cold and dry air is expected to provide the best observing conditions on the Earth for astronomical
observations from infra-red to sub-millimeter. To enjoy the advantages in Antarctica, we have a plan to make
astronomical observations at Dome Fuji, which is located at inland Antarctica. However, the harsh environment is very
problematic. For example, the temperature comes down to as low as-80 degree Celsius in winter, where instruments
designed for temperate environment would not work. In this context, we have developed a 40 cm infra-red telescope,
which is dedicated for the use even in winter at Dome Fuji. In designing the telescope, we took account of the difference
of the thermal expansion rate among materials, which were used for the telescope. Movable parts like motors were
lubricated with grease which would be effective at -80 degrees. Most parts of the telescope are made of aluminum to
make the telescope as light as possible, so that it makes the transportation from seacoast to inland and assembling at
Dome Fuji easier. We also report the experiment that we have done at Rikubetsu (the coldest city in Japan) in February
2008.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.