KEYWORDS: Computer generated holography, 3D modeling, 3D displays, Field programmable gate arrays, 3D image processing, Computing systems, Holography, 3D image reconstruction, Visualization, Telecommunications
Electro-holography is a prospective television technology for realizing photorealistic three-dimensional (3D) movies. However, the enormous computational power requirement for generating computer-generated holo- grams (CGHs) for digitally recording 3D information of the displayed image has been a barrier for the practical application of electro-holography. To solve this problem, our team has developed a dedicated computer for electro-holography, namely Holographic Reconstruction (HORN). HORN is a peripheral board-type computer comprising of field programmable gate arrays (FPGAs) and a PCI-express interface to configure cluster systems. In this paper, we introduced the detailed structure of HORN-8 and the implemented algorithms on it. Moreover, we discuss future prospects for improving its visual performance using executed experimental results.
We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.
We propose a simple gradation representation method for a reconstructed three-dimensional (3-D) image without controlling the brightness of the reference light. In the proposed method, we use multiple bit planes comprised of binary-weighted computer-generated holograms (CGHs) with various light transmittances. Binary-weighted CGH is generated by changing the white in the conventional binary CGH to gray. The light transmittance of a binary-weighted CGH is less than that of a conventional binary CGH. The object points of a 3-D object are assigned to multiple bit planes according to the gray level of the object points. The multiple bit planes are displayed sequentially in a time-division multiplex manner. Consequently, the proposed method realizes a gradation representation of a reconstructed 3-D object.
Parallel calculations of large-pixel-count computer-generated holograms (CGHs) are suitable for multiple-graphics processing unit (multi-GPU) cluster systems. However, it is not easy for a multi-GPU cluster system to accomplish fast CGH calculations when CGH transfers between PCs are required. In these cases, the CGH transfer between the PCs becomes a bottleneck. Usually, this problem occurs only in multi-GPU cluster systems with a single spatial light modulator. To overcome this problem, we propose a simple method using the InfiniBand network. The computational speed of the proposed method using 13 GPUs (NVIDIA GeForce GTX TITAN X) was more than 3000 times faster than that of a CPU (Intel Core i7 4770) when the number of three-dimensional (3-D) object points exceeded 20,480. In practice, we achieved ∼40 tera floating point operations per second (TFLOPS) when the number of 3-D object points exceeded 40,960. Our proposed method was able to reconstruct a real-time movie of a 3-D object comprising 95,949 points.
We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.