In the recent of the semiconductor manufacturing process, variety of properties (narrow gap-filling and planarity etc.) are required to organic BARC in addition to the conventional requirements. Moreover, SC-1 resistance is also needed because BARC is often used as a wet etching mask when TiN processing. But conventional BARC which include crosslinker doesn’t have enough SC-1 resistance, and we found that it is also difficult to obtain good gap-filling and good planarity because of outgassing and film shrinkage derived from the crosslinker. In this study, we have developed the new self-crosslinking BARC. The new crosslinking system shows low outgassing and film shrinkage because of not including crosslinker. So, novel BARC has better gap filling property and planarity and over 3 times higher SC-1 resistance than that of conventional BARC. Moreover, by adding the low molecular weight additive which has high adhesive unit to TiN surface, the novel BARC has over 10 times higher SC-1 resistance than that of conventional BARC. And this novel BARC can be applied both ArF and KrF lithography process because of broad absorbance, high etching rate, chemical resistance (SC-1, SC-2, DHF, and others) and good film thickness uniformity. In this paper, we will discuss the detail of new self-crosslinking BARC in excellent total performance and our approach to achieve high chemical resistance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.