Optical fiber components have the potential of enabling interconnections in compact systems because they provide reliable and efficient manipulation of light in application fields such as telecommunication, sensing and high power. A variety of glasses and fiber components including tapers, tips, bundles and couplers are typically fabricated using hydrofluoric acidbased etching processes. However, such a standard approach has some limitations related to the generation of surface defects (e.g., roughness and microcracks), poor process control and high chemical disposal costs. We propose an innovative glass etching process based on molten salts that will overcome these limitations. Molten salts can be thermally activated to etch glass materials with high precision. Initial plant development and industrial manufacturing capabilities are demonstrated on a modular etching system through a research collaboration. This system also has the advantage of managing a set of fibers simultaneously with an automatic process control. First results of etched glasses and especially, biconical fiber tapers show extremely smooth surfaces, good homogeneity, high reproducibility and potential scalability for further processing of fiber couplers. With respect to the fabrication tolerances, a value of ± 1 μm over a length of 10 mm has been found for the case of etched multimode tapers. The use of molten salts as an etching tool can be extended to economically create microstructures in glass panels for optical or fluidic purposes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.