A compact and high-resolution fiber-optic refractive index (RI) sensor based on a microwave photonic filter (MPF) is proposed and experimentally validated. The sensing head utilizes a cascaded in-line interferometer fabricated by an input single-mode fiber (SMF) tapered fusion with no-core fiber-thin-core fiber (TCF)-SMF. The surrounding RI (SRI) can be demodulated by tracing the passband’s central frequency of the MPF, which is constructed by the cascaded in-line interferometer, electro-optic modulator, and a section of dispersion compensation fiber. The sensitivity of the sensor is tailorable through the use of different lengths of TCF. Experimental results reveal that with a 30 mm length of TCF, the sensor achieves a maximum theoretical sensitivity and resolution of −1.403 GHz/refractive index unit (RIU) and 1.425×10−7 RIU, respectively, which is at least 6.3 times higher than what has been reported previously. Furthermore, the sensor exhibits temperature-insensitive characteristics within the range of 25°C−75°C, with a temperature-induced frequency change of only ±1.5 MHz. This value is significantly lower than the frequency change induced by changes in the SRI. The proposed MPF-based cascaded in-line interferometer RI sensor possesses benefits such as easy manufacture, low cost, high resolution, and temperature insensitivity.
KEYWORDS: Mode locking, Microwave radiation, Microsoft Foundation Class Library, Optoelectronics, Harmonic generation, Oscillators, Signal generators, Tunable filters, Pulse signals, Photonics
The optoelectronic oscillator (OEO) is a typical time-delay system with rich nonlinear dynamical characteristics. Most of the previous research on OEOs has been focused on analyzing the properties of OEOs with a long time delay, which makes it difficult to realize mode locking without additional phase-locking mechanisms. We have achieved, for the first time to our knowledge, a self-mode-locking OEO and generated stable microwave frequency combs by analyzing the characteristics of OEOs with an ultrashort time scale. In the experiment, the self-mode-locking OEOs with fundamental mode, second-order harmonic, and sixth-order harmonic were realized by adjusting the system parameters, all of which produced uniform square wave signals with tunable duty cycles, steep rising and falling edges, and periods of less than 20 ns. The self-fundamental-mode-locking OEOs with different time delays were also implemented and experimentally realized. Furthermore, the experiment revealed the self-hybrid mode-locking OEO, which is the coexistence and synchronization of the three measured self-locking modes in one OEO cavity, demonstrating the complex nonlinear dynamical behaviors of the OEO system and enabling the generation of periodic nonuniform hybrid square wave signals. The realization of the self-mode-locking OEO and the generation of flexible and stable square wave signals at ultrashort time scales enrich the study of OEO nonlinear dynamics in the realm of complex microwave waveform generation, offering promising applications in areas such as atomic clocks, radars, communications, and optoelectronic neural networks.
In this paper, a Sagnac interferometer with polarization maintaining fiber (PMF) for vector transversal loading measurement has been proposed and experimentally demonstrated. The light propagated in different axes of the PMF has different velocity because of fiber birefringence, which results in phase difference, and thus interferometer pattern is produced. When the birefringence parameters are affected by transversal loading, the phase difference of the light propagating in different axes will change, and as a result of the interferometer pattern of the Sagnac loop shifts. When transversal loading with the opposite direction is applied on the sensing fiber, the interferometer pattern also shifts, but oppositely to longer or shorter wavelength, by monitoring which vector transversal loading measurement can be achieved. The sensing characteristics when transversal loading is applied in different angles have also been studied. The proposed measurement method has a simple structure, and is easy to implement, which shows a good application prospects in the sensing field.
We have proposed and experimentally demonstrated a fiber-optic temperature sensing system based on an optoelectronic oscillator (OEO). A part of the fiber in the oscillator loop is used as the sensing fiber. As the free spectrum range (FSR) of the OEO is determined by the length of the oscillator loop, when the temperature of the sensing fiber is changed, the refractive index of the fiber varies; thus, the optical path length changes as well as the FSR of the OEO. By tracking one peak of the OEO harmonics, the temperature variation can be monitored. Therefore, the temperature variation can be converted to the frequency shift of the radio frequency signals. In the experiment, we have measured the spectra of the OEO with different temperatures, which show good sensing linearity. We have also measured the relationship between the sensing responsivity and the tracked frequency (1.0, 1.5, 2.0, and 3.0 GHz) in the experiment, which shows that the harmonics at a higher frequency produce a higher sensing responsivity. The proposed temperature sensing system exhibits good tunability, stability, linearity tailorable sensing responsivity, and ease of implementation, thus it shows good application potential in remote fiber-optical temperature sensing and monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.