The integrated cooling system with multi curved composite grooves on the surface of focal plate was designed to solve the problem that high-density heat resource is distributed on the focal plate. The new active heat dissipation experimental system was proposed considering the wide ambient temperature variation around the focal plate. The temperature field and deformation of the focal plate in the integrated cooling system under the environment of large temperature difference were analyzed by the simulation, and the active heat dissipation system for the focal plate was achieved by precise temperature control of the cooling medium. Meanwhile, the influence of active heat dissipation system on telescope observation was analyzed by the simulation. The simulation and experimental results suggested the integrated cooling system of focal plate can ensure the temperature of the focal plate constant and the deformation error of the focal plate is within the permitted range under the large temperature difference. And the new active heat dissipation system of focal plate can have a fast response speed and good adjustment ability in the condition of the varied ambient temperature, meanwhile, can effectively reduce the effect on the telescope observation.
KEYWORDS: Vibration isolation, Magnetism, Head, Cameras, Optical fibers, Control systems design, Prototyping, Metrology, Control systems, Imaging systems
Metrology Camera System (MCS) was designed to make a closed-loop control of the optical fiber position in Fiber Positioning System (FPS) on the focal plate of the LAMOST. The stability of the metrology platform is the key factor to the quality of camera shooting. A precise adjustable mechanism was designed in this paper to achieve the platform’s pitching and horizontal rotation adjustment. And also a vibration isolation system using Magnetic Negative Stiffness (MNS) and positive spring in parallel was designed to decrease the effect of vibration, which was caused by the multiple complex vibration loads existing in the working environment, on the platform. Furthermore, an air conditioning system using the semiconductor refrigerator and resistance heater was designed to ensure working temperature of the camera and lens in extreme temperature environments. The simulation results showed that these designs were effective to improve the stability of the metrology system
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.