Femtosecond laser-induced periodic surface structures have opened broad prospects in the aspect of high-efficient and low-cost nanotextured patterning, yet defined great challenges on how to keep the periodicity in a macro area. Herein, we report a transition from non-periodicity to periodicity as the scan strategies changing. By suppressing the transition from the initial structures to the nanogratings with long-range order, arbitrary high-resolution direct writing patterns have been obtained in a large area. We attribute this phenomenon to the dynamic evolution of the near-field energy deposition around the pre-existing structures. This approach paves another way to high-precision laser processing.
Laser-induced periodic surface structures (LIPSS) have gained lots of attention for the rich physics and potentials in subdiffraction nanostructuring. Herein, we report new aspects of LIPSS to uniformly extend the periodicity to macro, or conversely suppress the periodicity to obtain freeform nanostructures. We have focused on the electron excitation, effective surface permittivity modifications, and plasmonic standing wave ablation for the structure origination and evolution. A plasmonic nanoimprinting model in long range and a nanohole-based light field enhancement in the nearfield are proposed, which are in good accord with the experiments. The nanotextured surface is obtained in a large area by light tailoring method with a cylindrical lens focusing and scanning. Besides, a critical power control method to confine the light field in nanoregion are conducted to obtain the freeform nanostructures, which have potential applications in birefringent optics and nanoscience.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.