Accuracy is highly important on autonomous robots. In this work, we propose a novel visual-inertial SLAM with stereo camera and IMU, which construct sparse map and estimate the camera poses accurately. The camera and IMU data are tightly coupled by nonlinear optimization. pre-integration is used to integrate rotation, velocity, and the pose matrix. A serious techniques are adapted to feature extraction, keyframe selection select keyframes, and loop closure. In addition, the system can run real-time on standard computer. The system localization accuracy can arrive centimetre-level especially in a large scale environment, and system is robust. We elevate the system on public datasets to compare other visual-inertial SLAM approaches; our system achieves better accuracy and robustness.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.