Parallel binocular stereo vision system is a special form of binocular vision system. In order to simulate the human eyes observation state, the two cameras used to obtain images of the target scene are placed parallel to each other. This paper built a triangular geometric model, analyzed the structure parameters of parallel binocular stereo vision system and the correlations between them, and discussed the influences of baseline distance B between two cameras, the focal length f, the angle of view ω and other structural parameters on the accuracy of measurement. This paper used Matlab software to test the error function of parallel binocular stereo vision system under different structure parameters, and the simulation results showed the range of structure parameters when errors were small, thereby improved the accuracy of parallel binocular stereo vision system.
The incoherent digital holography makes it possible to record holograms under incoherent illumination, which lowers requirement for the coherence of light sources and results in expanding its application to white-light and fluorescence illuminating circumstances. The Fresnel Incoherent Correlation Holography (FINCH) technology achieves diverging the incident beam and shifting phase by mounting phase masks on the phase modulator. Then it obtains holograms with phase difference and reconstructs the image. In this paper, we explain the principles of the FINCH technology, and introduce the n-step phase-shifting method which is utilized to eliminate the twin image and bias term in holograms. During the research, we studied what impact the term n may have on imaging performance, compared imaging performances when different phase masks are mounted on SLM, and established simulation system on imaging with which imaging performances are deeply inspected. At last, it is shown in the research that the FINCH technology could record holograms of objects, from which clear images could be reconstructed digitally.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.