As a new non-destructive imaging technology in the field of biomedicine, photoacoustic imaging technology combines the advantages of pure optical and pure acoustic imaging with good spatial resolution, high sensitivity, and strong penetrating power. In the photoacoustic microscopy imaging system, the acousto-optic coupling prism is a component for optical transmission and ultrasonic detection. It is usually composed of an irregular prism and a spherical concave acoustic lens at the bottom. Because the spherical acoustic lens has a poor focusing effect on the ultrasonic beam, the accuracy of ultrasonic detection is low. In order to solve this problem, we propose an optimization method to eliminate the influence of acoustic lens on the beam transmission. A collimating lens is added to the acousto-optic coupling prism with an aspheric acoustic lens at the bottom of the system. In this paper, Zemax optimizes the curvature coefficient and thickness of the collimating lens to eliminate the deteriorating effect of the aspheric acoustic lens on the beam transmission, and evaluates the optimization effect by analyzing the spot and MTF image. The simulation results show that the collimating lens can eliminate the influence of the aspheric acoustic lens on the beam transmission, so that the optical focus and the acoustic focus can be kept coaxial and confocal, and the detection efficiency of the photoacoustic signal can be improved. This work has theoretical guiding significance for the study of photoacoustic microscopy imaging with large depth of field.
As a new non-destructive imaging technology in the field of biomedicine, photoacoustic imaging technology combines the advantages of pure optical and pure acoustic imaging with good spatial resolution, high sensitivity, and strong penetrating power. In the photoacoustic microscopy imaging system, the acousto-optic coupling prism is a component for optical transmission and ultrasonic detection. It is usually composed of an irregular prism and a spherical concave acoustic lens at the bottom. Because the spherical acoustic lens has a poor focusing effect on the ultrasonic beam, the accuracy of ultrasonic detection is low. In order to solve this problem, we propose an optimization method to eliminate the influence of acoustic lens on the beam transmission. A collimating lens is added to the acousto-optic coupling prism with an aspheric acoustic lens at the bottom of the system. In this paper, Zemax optimizes the curvature coefficient and thickness of the collimating lens to eliminate the deteriorating effect of the aspheric acoustic lens on the beam transmission, and evaluates the optimization effect by analyzing the spot and MTF image. The simulation results show that the collimating lens can eliminate the influence of the aspheric acoustic lens on the beam transmission, so that the optical focus and the acoustic focus can be kept coaxial and confocal, and the detection efficiency of the photoacoustic signal can be improved. This work has theoretical guiding significance for the study of photoacoustic microscopy imaging with large depth of field.
Photoacoustic microscopy imaging is an important imaging method of photoacoustic imaging. It is a new type of biomedical imaging method developed in recent years, which combines the advantages of high contrast of optical imaging and deep penetration of ultrasound imaging. In the photoacoustic microscopy imaging system, the acousto-optic coupling prism is a component for optical transmission and ultrasonic detection. It is usually composed of an irregular prism and a spherical concave acoustic lens at the bottom. Because the acoustic lens has a strong focusing effect on the ultrasonic beam, the depth of field of ultrasonic detection is small. In this regard, this paper constructs a bifocal acoustic lens, which is a biconcave acoustic lens with different radii of curvature, with a small middle focal length and a large edge focal length. However, the acoustic lens will cause the divergence of light. Therefore, this paper uses Zemax to design a collimating lens whose structure is similar to that of the acoustic lens. The concave surface of the collimating lens with different radii of curvature is optimized to achieve the purpose of light convergence. Finally, the resolution of the spot is analyzed to evaluate the optimization effect.The software simulation results show that the double-focus acoustic lens can realize fast large volumetric ultrasonic detection, and effectively improve the detection efficiency of photoacoustic signals. This work has important theoretical guiding significance for the study of photoacoustic microscopy imaging systems for large volumetric ultrasound detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.