Breast cancer is one of the most common cancers in females. To monitor chemotherapeutic efficacy for breast cancer, medical imaging systems such as x-ray mammography, computed tomography, magnetic resonance imaging, and ultrasound imaging have been used. Currently, it can take up to 3 to 6 weeks to see the tumor response from chemotherapy by monitoring tumor volume changes. We used near-infrared spectroscopy (NIRS) to predict breast cancer treatment efficacy earlier than tumor volume changes by monitoring tumor vascular reactivity during inhalational gas interventions. The results show that the amplitude of oxy-hemoglobin changes (vascular reactivity) during hyperoxic gas inhalation is well correlated with tumor growth and responded one day earlier than tumor volume changes after chemotherapy. These results may imply that NIRS with respiratory challenges can be useful in early detection of tumor and in the prediction of tumor response to chemotherapy.
Not only men suffer from sexual dysfunction, but the number of women who have sexual dysfunction rises. Therefore, it is necessary to develop an objective diagnostic technique to examine the sexual dysfunction of female patients, who are afflicted with the disorders. For this purpose, we developed a diffuse optical spectroscopy (DOS) probe to measure the change of oxy-, deoxy-, and total hemoglobin concentration along with blood flow from vaginal wall of female rats. A cylindrical stainless steel DOS probe with a diameter of 3 mm was designed for the vaginal wall of rats which consisted of two lasers (785 and 850nm) and two spectrometers with a separation of 2 mm. A thermistor was placed on the top of the probe to measure the temperature change from vaginal wall during experiments. A modified Beer-Lambert’s law is utilized to acquire the changes of oxy-, deoxy-, and total hemoglobin, and blood flow information is obtained by diffuse speckle contrast analysis technique. For the experiments, Sprague Dawley (~400 g) female rats were divided into two groups (control and vaginal dryness model). Vaginal oxygenation, blood flow and temperature were continuously monitored before and after sexual around induced by apomorphine. After the measurement, histologic examination was performed to support the results from DOS probe in the vaginal wall. The hemodynamic information acquired by the DOS probe can be utilized to establish an objective and accurate standard of the female sexual disorders.
Breast cancer is one of the most common cancers for females. To monitor chemotherapeutic efficacy of breast cancer, medical imaging systems such as X-ray mammography, computed tomography, magnetic resonance imaging, and ultrasonography have been used. Currently, it can take up to 3 to 6 weeks to see the tumor response from chemotherapy by monitoring tumor volume changes. In this study, we used near infrared spectroscopy to see if we can predict breast cancer treatment efficacy earlier than tumor volume changes by monitoring tumor vascular reactivity during inhalational gas interventions. The results show the amplitude of oxy-hemoglobin changes (vascular reactivity) during hyperoxic gas inhalation is well correlated with tumor growth, and responded 1 day earlier than tumor volume changes after chemotherapy. In addition, we fitted oxyhemoglobin concentration increase during hyperoxic gas intervention using a double exponential fitting model. From these, we found the change of amplitude 1 value is well matched with tumor growth and regression. Especially, it predicts the chemotherapeutic response of breast tumor better than the amplitude of oxyhemoglobin concentration change during hyperoxic gas intervention. These results may imply that near infrared spectroscopy with respiratory challenges can be useful in early detection of tumor and also in prediction of tumor response to chemotherapy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.