Here, we analytically study optical activity of chiral semiconductor gammadions whose chirality arises from the nonuniformity of their thickness. We show that such gammadions distinguish between the two circular polarizations upon the absorption of light, unlike two-dimensional semiconductor nanostructures with planar chirality. Chiral semiconductor gammadions of inverse conical shape are found to exhibit the highest dissymmetry of optical response among the nanostructures of the same size. The results of our theoretical study can be used in future applications of semiconductor gammadions in biomedicine and optoelectronics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.