The paper purpose is to investigate the influence of some of the machining input factors and conditions on the surface texture and roughness parameters. The machining tests were carried out on a homebuilt (DIY) CNC router with a one teeth carbide flat end mills. The router movements were calibrated in order to assure three decimals precision. The spindle speed is controlled by a frequency converter that allows setting the speed ranging from 0 to 20000 rpm. Rectangular pockets were milled considering cutting across and along the grain and at a 45-degree angle. Different cutting path strategies were generated using a specialized CAM software. A Taguchi DOE method was considered and a confocal microscope type CWM 100 produced by Mahr was used to analyze the surface texture and roughness parameters.
Over the last decades, 3D printing has become more and more highly used in the production of various parts and prototypes. There are several technologies employed for 3D printing. Of these, the most widely spread and most affordable is probably the FDM (Fused Deposition Modelling) technology, which permits the use of various thermoplastic polymers to create 3D geometries by melting the material and deposing it in thin layers. Technical advances in latest years made 3D printers widely available and affordable. It is therefore of interest to investigate the properties of parts manufactured using the simplest of printers and the most usual materials. The present paper presents experimental investigations conducted regarding the influence of the printing regimes on the surface properties in 3D printed parts. Various printing parameters, such as extruder temperature, print speed and layer thickness were varied for the same part. Printing was done using a general purpose printer with a delta bot structure. The parts investigated in the present study were made using a generic PLA (poly-lactic acid) filament. Surface properties were then investigated optically by aid of a confocal microscope. Using the microscope’s dedicated analysis software, surface micro-topography was investigated and its parameters, obtained in accordance to ISO 4287 and ISO 25178, were analyzed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.