TrackEye is a film digitization and target tracking system that offers the potential for quantitatively measuring the dynamic state variables (e.g., absolute and relative position, orientation, linear and angular velocity/acceleration, spin rate, trajectory, angle of attack, etc.) for moving objects using captured single or dual view image sequences. At the heart of the system is a set of tracking algorithms that automatically find and quantify the location of user selected image details such as natural test article features or passive fiducials that have been applied to cooperative test articles. This image position data is converted into real world coordinates and rates with user specified information such as the image scale and frame rate. Though tracking methods such as correlation algorithms are typically robust by nature, the accuracy and suitability of each TrackEye tracking algorithm is in general unknown even under good imaging conditions. The challenges of optimal algorithm selection and algorithm performance/measurement uncertainty are even more significant for long range tracking of high-speed targets where temporally varying atmospheric effects degrade the imagery. This paper will present the preliminary results from a controlled test sequence used to characterize the performance of the TrackEye tracking algorithm suite.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.