Puerto Rico suffered severe damage from the category 5 hurricane (Maria) in September 2017. Total monetary damages are estimated to be ~92 billion USD, the third most costly tropical cyclone in US history. The response to this damage has been tempered and slow moving, with recent estimates placing 45% of the population without power three months after the storm. Consequently, we developed a unique data-fusion mapping approach called the Urban Development Index (UDI) and new open source tool, Comet Time Series (CometTS), to analyze the recovery of electricity and infrastructure in Puerto Rico. Our approach incorporates a combination of time series visualizations and change detection mapping to create depictions of power or infrastructure loss. It also provides a unique independent assessment of areas that are still struggling to recover. For this workflow, our time series approach combines nighttime imagery from the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP VIIRS), multispectral imagery from two Landsat satellites, US Census data, and crowd-sourced building footprint labels. Based upon our approach we can identify and evaluate: 1) the recovery of electrical power compared to pre-storm levels, 2) the location of potentially damaged infrastructure that has yet to recover from the storm, and 3) the number of persons without power over time. As of May 31, 2018, declined levels of observed brightness across the island indicate that 13.9% +/- ~5.6% of persons still lack power and/or that 13.2% +/- ~5.3% of infrastructure has been lost. In comparison, the Puerto Rico Electric Power Authority states that less than 1% of their customers still are without power.
Two forestry-change detection methods are described, compared, and contrasted for estimating deforestation and growth in threatened forests in southern Peru from 2000 to 2010. The methods used in this study rely on freely available data, including atmospherically corrected Landsat 5 Thematic Mapper and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous fields (VCF). The two methods include a conventional supervised signature extraction method and a unique self-calibrating method called MODIS VCF guided forest/nonforest (FNF) masking. The process chain for each of these methods includes a threshold classification of MODIS VCF, training data or signature extraction, signature evaluation, k-nearest neighbor classification, analyst-guided reclassification, and postclassification image differencing to generate forest change maps. Comparisons of all methods were based on an accuracy assessment using 500 validation pixels. Results of this accuracy assessment indicate that FNF masking had a 5% higher overall accuracy and was superior to conventional supervised classification when estimating forest change. Both methods succeeded in classifying persistently forested and nonforested areas, and both had limitations when classifying forest change.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.