Our ultimate goal is to predict adverse cardiovascular events from CT calcium score exams using radiomics. Unlike the traditional whole heart Agatston score, our approach analyzes individual calcifications, creating a challenge for accurate/reproducible assessments. Optional preprocessing consisted of 3D blind deconvolution optimized on masked sharp structures, giving PSFs similar to measured ones, followed by noise reduction. In our experiment, we found that blind deconvolution improves the accuracy and reproducibility of CT calcium score evaluation. It is beneficial to use this to predict adverse cardiovascular event since it provides a robust and accurate evaluation of clinically relevant and pre-clinical calcifications. We conclude that for archived images where PSFs are unavailable, 3D blind deconvolution is a useful preprocessing step for improved radiomics assessments of CT-calcium-score images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.