Total Hip Replacement (THR) involves a conventional medical implant where many interacting factors could cause patient dissatisfaction, sometimes leading to lengthy and risky procedures based on guesses. Energy harvesting from natural human motion is being investigated to create a reliable source that will power smart implants and monitor performance simultaneously without any replacement or exchanges. A novel design of Triboelectric Energy Harvester (TEH) is proposed to retrofit a TEH to the THR implant, making it a smart implant. A custom femoral head was designed to incorporate grooves onto the THR femoral head, maximizing energy production without increasing the overall size. The TEH consists of two Titanium layers separated by a PDMS insulator. The Finite Element Analysis shows that the mechanical spring maintains the contact separation motion of the TEH. A theoretical model of a single-degree-of-freedom system with piecewise functions is proposed based on the FEA results to model the contact and release modes and voltage estimations. This study can open the door and lead to new research in load monitoring for total hip replacement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.