We present the design, fabrication, and testing of stretchable pressure sensing membranes. Two sensing techniques are demonstrated: resistive and capacitive. Both designs are incorporated in 400μm-thick films and are fabricated with thin film application of silicone and stencil/mask deposition of conductive materials. The resistive sensor utilizes room temperature liquid metal while the capacitive sensor utilizes multi-walled carbon nanotubes. Tests are performed with 18mm-diameter samples of each. Point load tests and acoustic response in an impedance tube provide feedback on sensor performance. The resistive sensor demonstrates a sensitivity of 0.045Ω/mm, and the sensor’s response has been characterized for in the 30Hz to 10kHz range with varying degrees of sensitivity. The capacitive sensor has a small point-load-deflection sensitivity ranging from 0.018pF/mm to 0.044pF/mm depending on capacitor diameter. Acoustic response are shown for 5Hz to 40 Hz, limited by external electronics. These devices are progress towards developing sensor networks capable of tracking aqueous turbulence.
We present a liquid flow sensor inspired by cupula structures found on a variety of fish. Our 5mm x 5mm x 1.75mm artificial cupula uniquely comprises a pair of differential liquid metal capacitors encased in silicone. Deflection of the structure – manually or by fluid flow – increases capacitance on one side and decreases on the other. To fabricate the complex internal structure, a commercial 3D printer is used to create a mold out of a sacrificial wax-like material. After casting uncured rubber, internal mold structures are melted and dissolved away, leaving channels and voids for liquid metal vacuum injection. The measured sensitivity of ~0.05pF/mm is compared to theoretical capacitance versus deflection values based on kinematics. To test behavior under water flow, a custom flow channel consisting of a 7.5mm x 7.5mm cross-section is employed with rates up to 1L/min. The parabolic capacitive response as a function of flowrate is compared to analytic theory based on kinematics and drag as well as to fluid-structure interaction (FSI) simulations using COMSOL. This device has future applications in the control of bio-inspired soft robotics. [Work sponsored by the Office of Naval Research.]
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.