Responding to health crises requires the deployment of accurate and timely situation awareness. Understanding the location of geographical risk factors could assist in preventing the spread of contagious diseases and the system developed, Covid ID, is an attempt to solve this problem through the crowd sourcing of machine learning sensor-based health related detection reports. Specifically, Covid ID uses mobile-based Computer Vision and Machine Learning with a multi-faceted approach to understanding potential risks related to Mask Detection, Crowd Density Estimation, Social Distancing Analysis, and IR Fever Detection. Both visible-spectrum and LWIR images are used. Real results for all modules are presented along with the developed Android Application and supporting backend.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.