The booming fields of antiferromagnetic spintronics and terahertz (THz) magnonics urge to understand the ultrafast dynamics triggered in antiferromagnets by ultrashort stimuli. The interest in ultrafast magnetism of antiferromagnets has led to new and vastly counter-intuitive findings in experimental and theoretical research. We report on the ultrafast spin and lattice dynamics in a rutile antiferromagnet.
Electric fields operating at THz frequencies hold significant promise for inducing ultrafast coherent excitations in magnetic heterostructures. Through the utilization of ferromagnetic/heavy metal (FM/HM) heterostructures, we have demonstrated that THz radiation (0.1 – 30 THz) exhibits combined functionality of microwaves and visible light. 1) Similar to microwaves, THz fields can effectively generate spin currents through the spin-Hall effect (SHE), resulting in an excitation of THz-frequency magnon modes. 2) Akin to visible light excitation, THz fields deposit heat, leading to the demagnetization of FM layers. Harnessing the THz-induced demagnetization as a spin current source within FM/HM heterostructures, we exploit the half-cycle THz electric field to incite spin currents, which subsequently transformed into picosecond charge currents through the inverse SHE within the HM layer. This conversion process results in the emission of a THz second harmonic signal, offering the THz spintronic frequency conversion.
We present a versatile high repetition rate, optical-parametric chirped-pulse amplifier system (OPCPA) in combination with a high-harmonic-generation (HHG) source. Tuning of the fundamental OPCPA driver wavelength allows for high harmonic generation within the full range between 25 and 50 eV. All energies between two adjacent odd harmonics can be addressed, making the system a powerful, gaplessly tunable extreme-ultraviolet (XUV) light source for spectroscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.